IJRCS – Volume 4 Issue 4 Paper 3

ANALYSIS OF FRACTAL IMAGE UNDER CAUCHY AND ITERATED SYSTEM

Author’s Name : Meenakshi Choudhary | Prof Sushma Lehri

Volume 04 Issue 04  Year 2017  ISSN No:  2349-3828  Page no: 9-13

12

Abstract:

An going round another picture makes picture of the foot way of a purpose under semi-group of great changes. The idea as first started given by barnsley [3] has greatest, highest importance in image forced together, biological making copies to scale another areas of fractal geometry. In this paper, we put into use for first time higher iterations to work-place the part of having an effect equal to the input and nonlinear great changes on the range of experience of a purpose. different qualities of the worked out noted representatives have been had a discussion about to give an idea of the usefulness of work place in mathematical observations made different algorithms are given to work out the orbital picture and V-variable going round another picture. An algorithm to work out the distance between mages makes the work-place give motion. A short discussion about the fact in support of the Cauchy order of images is also given. 

References:

  1. Barnsley Michael F. Fractals everywhere. 2nd ed. Revised with the assistance of and with a foreword by Hawley Rising, III. Academic Press Professional: Boston, MA; 1993, MR1231795 (94h: 58101).
  2. Barnsley Michael F, Hutchinson John E, Stenflo Örjan. A fractal valued random iteration algorithm and fractal hierarchy. Fractals 2005;13(2):111–46.MR2151094 (2006b: 28014).
  3. Barnsley Michael F. Super fractals. Cambridge: Cambridge University Press; 2006. MR2254477 (2008c: 28006).
  4. Barnsley MF. Transformations between self-referential sets. Am Math Mon 2009;116(4):291–304.
  5. Barnsley MF, Hutchinson JE, Stenflo Örjan. V-variable fractals: fractals with partial self-similarity. Adv Math 2008;218(6):2051–88.
  6. Devaney Robert L. An introduction to chaotic dynamical systems. Menlo Park: The Benjamin/Cummings Publishing Co., Inc.; 1986. MR0811850 (87e:58142).
  7. Devaney Robert L. A first course in chaotic dynamical systems, theory and experiment. Advanced book program reading. MA: Addison-Wesley; 1992.MR1202237.
  8. Edgar Gerald A. Measure, topology and fractal geometry. New York: Springer-Verlag; 1990. MR1065392 (92a: 54001.
  9. El Naschie MS. Fractal black holes and information. Chaos Solitons Fractals 2006;29(1):23–35.
  10. El Naschie MS. Einstein’s dream and fractal geometry. Chaos Solitons Fractals 2005;24(1):1–5.
  11. Encarnacao JL, Peitgen HO, Sakas G, Englert G. Fractal geometry and computer graphics. Berlin, Heidelberg: Springer-Verlag; 1992.
  12. Hutchinson John E. Fractals and self-similarity. Indiana Univ Math J 1981;30(5):713–47. MR0625600 (82h: 49026.
  13. Huttenlocher Daniel P, Klanderman Gregory A, Rucklidge William J. Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell 1993;15(9):850–63.
  14. Kuijvenhoven B. V-variable fractals: theory and implementation. <http://www.kuijvenhoven.net>.
  15. Lapidus Michel L. (Managing Editor), Frankenhuysen Machiel Van (editor). In: Proceedings of symposia in pure mathematics. 72, Parts 1 & 2: fractal geometry and applications, a jubilee of benoit B. Providence: Mandelbrot, Amer Math Soc; 2004.
  16. Mandelbrot Benoit B. The fractal geometry of nature. San Francisco, Calif.: W.H. Freeman and Co.; 1982. MR0665254 (84h: 00021.
  17. Mandelbrot Benoit B. Fractals and chaos. The Mandelbrot set and beyond, Selecta Volume C. With a foreword by P.W. Jones and texts co-authored by C.J.G. Evertsz and M.C. Gutzwiller, Selected Works of Benoit B. New York: Mandelbrot, Springer-Verlag; 2004. MR2029233 (2005b:01054).
  18. Robert Mann W. Mean value methods in iteration. Proc Am Math Soc 1953;4:506–10. MR0054846 (14,988f).
  19. Negi Ashish, Rani Mamta. A new approach to dynamic noise on superior Mandelbrot set. Chaos Solitons Fractals 2008;36(4):1089–96. MR2379372.
  20. Negi Ashish, Rani Mamta. Midgets of superior Mandelbrot set. Chaos Solitons Fractals 2008;36(2):237–45. MR2382154.
  21. Peitgen HO, Jürgens H, Saupe D. Chaos and fractals. New frontiers of science, 2nd ed. With a foreword by Mitchell J. Feigenbaum. New York: Springer-Verlag; 2004. MR2031217 (2004m:37061)).
  22. Rani M, Kumar V. Superior Julia set. J Korea Soc Math Edu 2004;8(4):261–77.
  23. Rani M, Kumar V. Superior Mandelbrot set. J Korea Soc Math Edu 2004;8(4):279–91.
  24. Shonkwiler R. An image algorithm for computing the Hausdorff distance efficiently in linear time. Inform Process Lett 1989;30(2):87–9. MR0983536(90c:68079.
  25. Shonkwiler R. Computing the Hausdorff set distance in linear time for any Lp point distance. Inform Process Lett 1991;38(4):201–7. MR1113350(92d:68115.
  26. Singh SL, Jain Sarika, Mishra SN. A new approach to super fractals. Chaos Solitons Fractals 2009;42:3110–20.