IJRE – Volume 4 Issue 4 Paper 4

INDEFINITE-PERMEABILITY METAMETERIAL LENS WITH FINITE SIZE FOR MINIATURIZED POWER SYSTEM

Author’s Name :  K N Kashyap | Manoj Kumar S | Mohammad Ibrahim | Prof Linija Shylin Kp

Volume 04 Issue 04  Year 2017  ISSN No:  2349-252X  Page no: 19-23

12

 

 

 

Abstract:

A miniaturized wireless power transfer (WPT) system using indefinite-permeability metamaterial (IPMM) lens with finite size is proposed and investigated theoretically and experimentally. Theoretical simulations show that the IPMM lens outperforms isotropic negative metamaterial (NMM) lens in terms of coupling efficiency and lens size. A highly sub-wavelength IPMM operation at high frequency was designed, fabricated, and measured. The WPT experiments show that the efficiency can be enhanced significantly from 0.7% to 22.0% when the system is loaded with IPMM lens around 4 MHz. The further study shows that the IPMM lens can extend the operating distance of WPT by using an optimization approach.

Key Words:

Wireless power transfer; Indefinite-permeability; Metamaterial lens

References:

  1. Brown WC. The history of power transmission by radio waves. IEEE Trans Micro Theory Tech 1984;32:1230–42.
  2. Boys J, Covic G, Green AW. Stability and control of inductively coupled power transfer systems. IEE P-Electr Power Appl 2000;147:37–43.
  3. Leyh G, Kennan M. Power symposium, NAPS ’08. 40th North American. p. 1.
  4. Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljac?ic´ M. Wireless power transfer via strongly coupled magnetic resonances. Science 2007;317:83–6.
  5. Ahn D, Hong S. A study on magnetic field repeater in wireless power transfer IEEE Trans. Ind Electron 2013;60:360–71.
  6. Huang D, Urzhumov Y, Smith DR, Teo KH, Zhang J. Magnetic super lens enhanced inductive coupling for wireless power transfer. J Appl Phys 2012;111:064902.
  7. Mater Hasegawa R. Applications of amorphous magnetic alloys. Sci Eng A 2004;375–377:90–7.
  8. Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 2000;85:3966.
  9. Smith DR, Padilla WJ, Vier D, Nemat-Nasser SC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 2000;84:4184.
  10. Cheng YZ, Yang HL, Nie Y, Gong RZ, Cheng ZZ. Investigation of negative index properties of planar metamaterials based on split-ring pairs. Appl Phys A 2011;103:989–94.
  11. Fang N, Lee H, Sun C, Zhang X. Sub–diffraction-limited optical imaging with a silver super lens. Science 2005;308:534.
  12. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006;314:977.
  13. Cheng YZ, Gong RZ, Cheng ZZ. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves. Opt Commun 2016;361:41–6.
  14. Cheng YZ, Wu CJ, Cheng ZZ, Gong RZ. Ultra-compact multi-band chiral metamaterial circular polarizer based on trip
  15. Liu JP, Cheng YZ, Nie Y, Gong RZ. Metamaterial extends microstrip antenna. Microwave RF 2013;52(12):69–73.
  16. Fan Y, Cheng YZ, Nie Y, Wang X, Gong RZ. An ultrathin wide-band planar meta material absorber based on fractal frequency selective surface and resistive film. Chin Phys B 2013;22(6):67801.
  17. Choi J, Seo C. High-efficiency wireless energy transmission using magnetic resonance based on negative refractive index meta material. Prog Electromagn Res 2010;106:33–47.
  18. Wang B, Teo KH, Nishino T, Yerazunis W, Barnwell J, Zhang J. Experiments on wireless power transfer with metamaterials. Appl Phys Lett 2011;98:254101.
  19. Fan Y, Li L, Yu S, Zhu C, Liang C-H. Experimental study of efficient wireless power transfer system integrating with highly sub wavelength meta materials. Prog Electromagn Res 2013;141:769–84.
  20. Wang B, Yerazunis W, Teo KH. Wireless power transfer: meta materials and array of coupled resonators. Proc IEEE 2013;101:1359–68.
  21. Ranaweera A, Duong TP, Lee JW. Experimental investigation of compact metamaterial for high efficiency mid-range wireless power transfer applications. J Appl Phys 2014;116:043914.
  22. Rajagopalan A, Ram Rakhyani AK, Schurig D, Lazzi G. Improving power transfer efficiency of a short-range telemetry system using compact meta materials. IEEE Trans Microwave Theory Tech 2014;62:947–55.
  23. Chen WC, Bingham CM, Mak KM, Caira NW, Padilla WJ. Extremely sub wavelength planar magnetic meta materials. Phys Rev B 2012;85:201104.
  24. Smith DR, Schurig D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys Rev Lett 2003;90 (7):077405.
  25. Zhao Y, Leelarasmee E. Controlling the resonances of indefinite materials for maximizing efficiency in wireless power transfer. Microwave Opt Technol Lett 2014;56:867.
  26. Urzhumov Y, Chen W, Bingham C, Padilla W, Smith DR. Magnetic levitation of meta material bodies enhanced with magneto static surface resonances. Phys Rev B 2012;85:054430.
  27. Roberts D, Kundtz N, Smith D. Optical lens compression via transformation optic. Opt Express 2009;17(9):16535–42.