IJREE- Volume 3 Issue 1 Paper 5

A HIGH STEP UP DC TO DC CONVERTER FOR FUEL CELL POWER SYSTEM UNDER APS CONTROL 

Author’s Name : Elaiyaraja S | Abirami G

Volume 03 Issue 01  Year 2016  ISSN No:  2349-2503  Page no: 29-35

12

 

 

 

 Abstract:

With the growing concern for energy saving, the necessity to explore the renewable energy like fuel cell is
increasing. A grid connected fuel cell backed up by a super capacitor is considered for study. Fuel cell output voltage
must be boosted before connecting to the grid. While using boost converter EMI interference and switching losses will be
high. Therefore, a high step up DC to DC converter is used for better performance. Reliability of system is improved by
adding a super capacitor, which has higher lifespan compared to a battery. MATLAB is used for simulation. Finally, a
satisfactory output results are presented.

Keywords:  

EMI interference, switching losses, fuel cell, Boost converter

References:

  1. N. Sammes, Fuel Cell Technology: Reaching Towards Commercialization. London, U.K.: Springer-Verlag, 2006.
  2. G. Fontes, C. Turpin, S. Astier, and T. A. Meynard, “Interactions between fuel cells and power converters: Influence of current harmonics on a fuel cell stack,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 670–678, Mar. 2007.
  3. P. Thounthong, B. Davat, S. Rael, and P. Sethakul, “Fuel starvation,” IEEE Ind. Appl. Mag., vol. 15, no. 4, pp. 52–59, Jul./Aug. 2009.
  4. S.Wang,Y.Kenarangui, and B. Fahimi, “Impact of boost converter switching frequency on optimal operation of fuel cell systems,” in Proc. IEEEVehicle Power Propulsion Conf., 2006, pp. 1–5.
  5. S. K. Mazumder, R. K. Burra, and K. Acharya, “A ripple-mitigating and energy-efficient fuel cell power-conditioning system,” IEEE Trans. PowerElectron., vol. 22, no. 4, pp. 1437–1452, Jul. 2007.
  6. B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capacitor/ switched-inductor structures for getting transformerless hybrid DC–DC PWM converters,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 55, no. 2, pp. 687–696, Mar. 2008.
  7. Z. Qun and F. C. Lee, “High-efficiency, high step-up DC–DC converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65–73, Jan. 2003.
  8. A. Fardoun and E. H. Ismail, “Ultra step-up DC–DC converter with reduced switch stress,” IEEE Trans. Ind. Appl., vol. 46, no. 5, pp. 2025– 2034, Sep./Oct. 2010.
  9. M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, and R. Gules, “Voltage multiplier cells applied to non-isolated DC–DC converters,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 871–887, Mar. 2008.
  10. R. Gules, L. L. Pfitscher, and L. C. Franco, “An interleaved boost DC– DC converter with large conversion ratio,” in Proc. IEEE Int. Symp. Ind.Electron., 2003, pp. 411–416.
  11. Shahin, M. Hinaje, J. Martin, S. Pierfederici, X. Rae, S. L. Rael, and B. Davat, “High voltage ratio DC–DC converter for fuel-cell applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3944–3955, Dec. 2010.
  12. L. Zhang, G. Shen, M. Chen, A. Ioinovici, and Dehong Xu, “Two-phase interleaved boost converter with voltage multiplier under APS control method for fuel cell power system,” in Proc. 7th Int. Power Electron.Motion Control Conf., Jun. 2–5, 2012, vol. 2, pp. 963–967.
  13. S. Lee, P. Kim, and Sewan Choi, “High step-up soft-switched converters using voltage multiplier cells,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3379–3387, Jul. 2013.