
 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

Fast Data Collection in Wireless Sensor Networks
Pradeep G1

1 (P.G. Scholar,Department of Computer Science and Engineering, RVS College of Engineering and Technology,
Coimbatore, India)

1pradeep.be2012@gmail.com

Abstract: We study fast data collection in linear duty-cycled wireless sensor networks (WSNs). We first present a benchmark
algorithm that can achieve optimality in a general case (i.e., in non-duty-cycled case). Then, based on the insights obtained in the
general case, we propose an optimal algorithm and a distributed algorithm for the case when each sensor only works at one slot in a
cycle in duty-cycled mode. It is proven that the two latter algorithms with cycle length equal to 3 have bounded performance gap to the
benchmark algorithm in the non-duty-cycled case. Simulation results are used to demonstrate the effectiveness of the proposed
algorithms

Keywords: Data collection, duty cycle, sensor networks.

I. INTRODUCTION

One essential mission of a wireless sensor network (WSN)
is to efficiently deliver data collected by sensors to a base
station (BS). In many WSN applications (e.g., the WSNs
deployed along the roadside to detect car accidents, animals,
and other dangerous road conditions), it is desired that the
data be delivered as soon as possible, to minimize the
completion time of data collection. The completion time may
be affected by the following factors. First, a sensor is usually
equipped with a half-duplex transceiver, which means it
cannot send and receive simultaneously. Second, collisions
may happen due to interference among sensors’ transmissions.

Generally, minimum-time data collection in WSNs is an
NP complete problem. Nevertheless, some optimal algorithms
(noting that an optimal algorithm in this paper means that the
algorithm minimizes the completion time of data collection)
have been provided in the literature for some special cases.
The work gives an optimal data collection algorithm for a
linear WSN. The data collection problem is transformed into a
data distribution problem, and then, the schedules in the data
distribution problem are mapped into an optimal data
collection solution. For a linear WSN in which each sensor
has one packet to send, a distributed data collection algorithm
is proposed, in which sensors rotate among three states
(“transmission,” “idle,” and “receive”), and their initial states
depend on their distance to the BS. Optimal data collection
algorithms are given for a WSN with a tree topology, by
assuming that interference is eliminated by power control or
multichannel scheduling.

All above works assume that sensors are ready to receive
or transmit packets at all times (i.e., they are in non-duty-
cycled mode). However, usually, WSNs are expected to work
for a long time (e.g., several months or even several years). If
a sensor keeps running continuously, it may run out of battery
in a few days. Therefore, a viable solution is to apply a duty-
cycled mode. During each cycle of a number of slots, each
sensor works in one or more working slots and sleeps in other
slots. In particular, if each sensor is allowed to work at only
one slot in a cycle, the working mode of the WSN is called
low-power listening mode. Recently, duty-cycled WSNs have
attracted much research attention. The major research efforts
focus on routing and load balancing. To the best of our
knowledge, there is no work in the literature that addresses
fast data collection in duty-cycled WSNs considering the
aforementioned two limiting factors (i.e., half duplex
transceivers and interference).

To fill this research gap, in this paper, we investigate
minimum-time data collection in duty-cycled WSNs with
linear topologies, such as WSNs deployed along gas pipelines
(to detect gas leakage), highways (to detect accidents), and
underground tunnels (to detect gas and/or water), etc. To gain
insights for designing data collection algorithms in duty-
cycled WSNs, we first present a benchmark algorithm that is
optimal in a more general case, i.e., in non-duty-cycled case.
Then, based on insights obtained in the benchmark algorithm,
we design an optimal algorithm and a distributed algorithm
for duty-cycled case whose performance gap to the benchmark
algorithm is bounded if the cycle length is equal to 3.
Although the work also gives a centralized optimal solution
for a non-duty-cycled linear WSN, the insights may not be
able to be used in a duty-cycled WSN. This is because the
scheme is based on the symmetry property of the data
collection schedule (from sensors to the BS) and the data
distribution schedule (from the BS to sensors). The symmetry
property, which holds in a non-duty-cycled WSN, no longer
holds for a duty-cycled WSN due to the fact that data
transmission in a duty cycled WSN is receiver based (i.e., a
node can receive packets only at its working slots, as shown in
Section III). Noting that the optimal algorithm for linear non-
duty-cycled WSNs is generally not unique, we solve the
problem from a new perspective in this paper and provide
insights that we may achieve optimality by giving higher
priority to nodes closer to the BS and making simultaneous
transmissions apart by at least three hops. As can be shown in
Section III, these insights can be used in a duty-cycled WSN.
Moreover, by using our proposed benchmark algorithm as a
reference point, we show in Section III-B that our optimal
duty-cycled algorithm and distributed duty-cycled algorithm
have bounded performance gap to the optimal performance in
the general case (i.e., in a non-duty-cycled WNS), whereas the
performance bounds cannot be derived if we use the algorithm
as a reference point for comparison.

II. BENCHMARK ALGORITHM IN NON-DUTY-
CYCLED CASE

Consider a linear WSN as shown in Fig. 1. The network is
denoted G = (V, E), with V = {0, 1, 2, . . . , N} being the set of
nodes and E = {(i, i −1)|1 ≤i ≤N} being the set of wireless
links. Node 0 is the BS, and node i is i hops away from the
BS.

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 01 2015 www.researchscript.com 26

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

Fig. 1. Considered linear WSN.

Each node (e.g., node i) is equipped with an

omnidirectional antenna and a half-duplex transceiver, and is
able to communicate directly only with its two closest
neighbors (node i + 1 on the left-hand side and node i – 1 on
the right-hand side).1 Assume node i has wi(≥0) packets to be
sent to the BS. For presentation simplicity, the packets are
assigned with increasing indexes from node 1 to node N. The
w1 packets of node 1 are indexed as 1, 2, . . . , w1, the w2
packets of node 2 are indexed as w1 + 1,w1 + 2, . . . , w1 +
w2, and so on. Each node, e.g., node i, only transmits to its
next-hop node, i.e., node i −1. Without loss of generality,
when a node transmits to its next hop, it always sends the
packet with the smallest index among all packets at its buffer
(including its own packets and its received packets from other
nodes). Therefore, during the data collection, it is impossible
that a packet with a larger index is closer to the BS than a
packet with a smaller index. Therefore, at the BS, packet 1
arrives first, whereas the packet with the largest index arrives
last. Our target is an optimal data collection algorithm that has
the minimum completion time for all the packets to arrive at
the BS.

Similar to [1]–[4], time is divided into fixed-length slots,
and in each time slot, multiple nodes may be scheduled to
transmit simultaneously. Here, when we say a node is
scheduled, it means the node can transmit
a packet.2 At a time slot, when node i is scheduled to transmit
(to node i −1), nodes i + 1 and i −1 cannot be scheduled to

transmit (to nodes i and i −2, respectively) due to the half-

duplex transceiver, and nodes i + 2 and i −2 cannot be

scheduled to transmit (to nodes i + 1 and i −3, respectively)
due to the hidden terminal problem. In other words, among
any three consecutive nodes, only one node can be scheduled
to transmit at a time slot.

For a data collection algorithm, when the packet with the
largest index arrives at node 3 at a time slot (e.g., slot t), all
packets that have not arrived at the BS yet are with nodes 3, 2,
and 1. Since only one node can transmit among these three
nodes, it does not change the completion time if we arbitrarily
schedule the remaining packets in time slots starting from slot
t + 1. Since our target is the minimal completion time of
gathering all packets, without loss of generality, we consider
only data collection algorithms satisfying the following last-3-
node assumption.When the packet with the largest index
arrives at node 3 at a time slot, at any subsequent slot, the data
collection algorithms always schedule the remaining packet
with the smallest index to be sent.

Note that all assumptions related to the packet index are
made to simplify presentation, and they are not mandatory for
the proposed algorithms because our goal is to minimize the
completion time of data collection. For example, if node i is
scheduled to transmit by an algorithm, it can transmit any
arbitrary packet in its buffer without changing the completion
time of the algorithm.

Fig. 2. Greedy data collection algorithm for a seven-node

linear WSN.

Since nodes closer to the BS have more traffic load, we
propose Algorithm 1, which is a greedy algorithm that gives
priority to those nodes. In Algorithm 1, Buffer[i] (i = 0, 1, . . .
, N) denotes the number of packets at the buffer of node i.
Therefore, at the beginning, Buffer[0] = 0, and Buffer[i] = wi,
i = 1, 2, . . . , N. In the algorithm, t denotes the time slot index.
At t = 1, we first schedule the node (e.g., node i) that has
packets and is closest to the BS. Then, node i + 3 is checked
(in line 10 of Algorithm 1) (recalling that, among any three
consecutive nodes, only one node can be scheduled to transmit
at a time slot). If the node has packets, then it is scheduled to
transmit at the slot; otherwise, the node that is one-hop farther
away from the BS is checked (in line 12 of Algorithm 1). This
process is repeated until no more nodes can be scheduled,
which completes the scheduling for t = 1. For t = 2, 3, . . ., the
same procedure is repeated until all the packets arrive at the
BS. Fig. 2 shows an example in a seven-node linear WSN. At
the nodes, the numbers inside the brackets {・} are the
indexes of packets generated at the corresponding nodes. Each
arrow means a transmission, whereas the number above the
arrow means the index of the packet that is transmitted. The

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 01 2015 www.researchscript.com 27

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

scale on the right represents the time slot scale. It can be seen
that the data collection takes 15 time slots.

In data collection, if packet k is generated at node i, its
transmission from node i to the BS can be described by time
schedule (tki,/ tki−1, . . . , tk3, tk2, tk1), where tkj(j = i, i −1, .
. . , 2, 1) is the index of the slot when node j transmits packet
k. For instance, for the scheduling shown in Fig. 2, the time
schedules of packets 1, 2, and 6 are (1), (2, 3), and (1, 4, 8, 9,
13, 14, 15), respectively.

Lemma 1: Consider a linear WSN with N nodes and K
packets to be transmitted to the BS. Assume packet K is
generated at node i. For an optimal data collection solution of
the network, denote tK1 as the transmission moment (slot
index) of packet K at node 1, which is also the minimum
completion time of data collection of
the K packets. Suppose another packet, which is denoted as K
+ 1, is added at node j where j ≥i. For optimal data collection
of the K + 1 packets, denote ˆtln (n = 1, 2, . . . , N; l = 1, 2, . . .
, K + 1) as the index of the slot when node n transmits packet
l. Then, ˆtK+1 1 is the minimum completion time of the data
collection. We have three cases: 1) ˆtK+1 1 = tK

1+ 1 if i = j = 1;
2) ˆtK+1

1= tK
1+ 2 if i = j = 2 ori = 1, j = 2; and 3) ˆtK+1

1≥tK
1+ 3

if j ≥3 and j ≥i.
Proof: Nodes 3, 2, and 1 form a bottleneck of the data

collection because, at any slot, only one node among them is
allowed to transmit. Therefore, Cases 1 and 2 are obviously
true. For Case 3, at an optimal data collection solution for the
K + 1 packets, the time when node 3 transmits packet K + 1,
which is denoted as ˆtK+1

3, must be later than tK
1because,

otherwise, we can remove packet K + 1 from the transmission
schedule and get a schedule for K packets that has a
completion time less than tK

1(recalling that, based on the last-
3- node assumption, when packet K + 1 is sent at node 3, all
other packets have already arrived at the BS). It takes two
more slots for packet K + 1 to be sent from node 2 to the BS.
Therefore, ˆtK+1

1=ˆtK+1
3+ 2 ≥tK

1+ 3 if j ≥3 and j ≥i.

Theorem 1: Algorithm 1 is optimal.

Proof: We use mathematical induction for proving.
If there is only one packet to transmit, it is apparent that

Algorithm 1 uses minimum time slots in data collection.
Suppose Algorithm 1 uses minimum time slots in data

collection of any k packets in an N-node network. Now, we
use Algorithm 1 to schedule k + 1 packets in the N-node
network. We denote ˆtl

nas the scheduling time of packet l(∈

{1, 2, . . . , k,k + 1}) at node n(∈{1, 2, . . . , N}). We denote

tl
nas the scheduling time of packet l(∈{1, 2, . . . , k}) at node n

when Algorithm 1 is applied to schedule only packets 1, 2, . .
., k. Then, tk

1 is the minimum number of slots for data
collection of packets 1, 2, . . ., k. Apparently tl

n= ˆtl
n, n ∈ {1, . .

. , N},
l ∈ {1, . . . , k}. There are two cases as follows.

Case 1: Suppose packets k + 1 and k are both generated at
node i, i >3 (for i ≤3, it is easy to prove).

Consider that Algorithm 1 is applied for the k + 1 packets.
It can be seen that, at any moment, packet k + 1 is within three
hops from packet k. Therefore, at the beginning of slot
ˆtk

3(i.e., the slot when packet k is sent by node 3 to node 2),
packet k + 1 is with nodes 6, 5, 4, or 3, and all other packets
(packets 1, 2, . . . , k −1) have already arrived at the BS. Then,

Algorithm 1 takes the subsequent two slots, which are slots
ˆtk

2=(ˆtk3+ 1) and ˆtk
1(= ˆtk

3+ 2), to send packet k from node 2
to the BS. At the end of slot ˆtk

1, packet k + 1 should be
withnode 3. Since all other packets have arrived at the BS at
this moment,Algorithm 1 takes three more slots to deliver
packet k+1 from node 3 to the BS. In other words, ˆtk+1

1= ˆtk
1+

3. Recall that ˆtk
1= tk

1(the minimum time slots needed for data
collection of packets 1, 2, . . . , k). From Lemma 1, it can be
concluded that ˆtk+1

1is the minimum number of slots for data
collection of packets 1, 2, . . ., k + 1.

Case 2: Suppose packets k+1 and k are generated at nodes
j and i, respectively, with j > i.

When j ≤i + 3, it means that packet k + 1 is initially within
three hops from packet k. Then, when Algorithm 1 is used for
the k + 1 packets, at any slot, packet k + 1 is always within
three hops from packet k. Therefore, at the beginning of slot
ˆtk

3, packet k + 1 is with nodes 6, 5, 4, or 3. Similar to the
proof in Case 1, it can be proven that ˆtk+1

1is the minimum
number of slots for data collection of packets 1, 2, . . ., k + 1.
Next, we consider the scenario when j > i + 3. Since there are
no packets between nodes j and i, by Algorithm 1, packet k +
1 is transmitted in consecutive slots, starting from slot 1 until
packet k + 1 is three hops away from packet k. If ˆtk

3≤j −6
(i.e.,when packet k is scheduled at node 3, packet k + 1 cannot
reach node 6), packet k + 1 is always more than three hops
away from packet k; thus, packet k + 1 is scheduled
continuously from slot 1 until it arrives at the BS at slot ˆtk+1

1=
j. Apparently, this completion time of datacollection of the k +
1 packets is minimum. If ˆtk

3> j −6, it means that packet k + 1
can be within three hops away from packet k at a specific slot.
Then, similar to the proof in Case 1, Algorithm 1 uses the
minimum number of slots for data collection of the k + 1
packets.

The major drawback of Algorithm 1 is that it is a
centralized algorithm and needs global information.
Therefore, it is to be used to provide design insights and used
as a comparison benchmark in Section III.

III. OPTIMAL AND DISTRIBUTED ALGORITHMS IN
DUTY-CYCLED CASE

A. Optimal Algorithm in Duty-Cycled Case

In a duty-cycled scheduling, consider that each node
(except the BS) is assigned one working slot in a cycle of T
slots. During each cycle, a node (e.g., node i) wakes up at its
working slot to receive a packet (if any) transmitted from node
i + 1. Node i can also wake up to transmit a packet to its next
hop neighbor, i.e., node i −1, at the working slot of node i −1.
In other slots, node i is in sleeping state to save power. The
BS is assumed to be in receiving state all the time. Similar
assumptions are also adopted. Note that the transmission is
receiver based: a feasible transmission from node i to node i
−1 at slot t of a cycle must satisfy two conditions: 1) slot t is

the working slot of node i −1; and 2) node I has packets to

transmit. Denote the working slot of node i as τi ∈ {1, 2, . . . ,

T }, and assume T ≥3. The duty-cycled mode saves nodes
energy butmay increase the completion time of data collection
because a node only receives a packet at its working slot in
each cycle. Recall that one insight in Algorithm 1 is that
simultaneous transmissions should be apart by at least three
hops. Therefore, the working slots of the nodes should be

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 01 2015 www.researchscript.com 28

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

assigned such that the working slots of any three consecutive
nodes are different from each other. This can be done by a
working slot assignment scheme when the WSN is initialized.
To achieve this, we propose the following working slot
assignment scheme for the initialization stage of a linear WSN
with T ≥3. When the WSN is initialized, the BS sends a
SLOT_ASSIGN packet, in which there is a field called
WORKING_SLOT with initial value arbitrarily selected from
{1, 2, . . . , T }. When a node receives the packet, it takes the
value in theWORKING_SLOT field as its working slot index.
The node then forwards the packet to the other side of the
network but with the value in the WORKING_SLOT field
reduced by 1. If the value equals 0 after the reduction, the
value is set to T instead. By this working slot assignment
scheme, the working slots of any T consecutive nodes are
different from each other.

The following algorithm, which is denoted as Algorithm
2, is proposed.

1) Node i(2 ≤i ≤N) transmits at slot τi−1 if it has
packets.

2) At any slot other than slots τ2 and τ1, node 1, if it
has packets, transmits a packet to the BS.

3) At slot τ2, node 1, if it has packets, transmits when
node 3 has no packet.

4) At slot τ1, node 1, if it has packets, transmits when
node 2 has no packet.

In other words, in Algorithm 2, each node (except node 1)
can transmit to its next-hop node at the working slot of the
next-hop node, whereas node 1 can transmit to the BS at slots
when nodes 3 and 2 do not transmit.

In Algorithm 2, node 1 is given more chances to transmit

than other nodes. Therefore, Algorithm 2 is also greedy. We
have the following theorem.

Theorem 2: Algorithm 2 uses a minimum number of slots

in data collection in a linear WSN with a given working slot
assignment in which each node, except the BS, is assigned
with one working slot in a cycle, and the working slots of any
three consecutive nodes are different from each other.

Proof: Consider node i, i ∈ {4, 5, . . . , N}. Since node i’s

receiving node, i.e., node i −1, has a different working slot
from working slots of those nodes that are within two hops of
node i −1, it is optimal for node i, if it has packets, to transmit

a packet to node i −1 at the working slot of node i −1.
Therefore, it is optimal to apply Part 1 of Algorithm 2 to
nodes 4, 5, . . ., N. Next, we consider nodes 3, 2, and 1. The
receiving node of nodes 3 and 2 are nodes 2 and 1, with
working slot being τ2 and τ1, respectively. The receiving node
of node 1 is the BS, which can receive at any slot. Then,
apparently, it is optimal to apply Part 2 of Algorithm 2. Next,
we prove that, for slot τ2, it is optimal to apply Part 1 of
Algorithm 2 to node 3, and apply Part 3 of Algorithm 2 to
node 1. In other words, we need to prove that, when both
nodes 3 and 1 have packets at slot τ2, it is optimal to let node
3 transmit. We use proof by contradiction. Suppose it is not
optimal to always schedule node 3 at slot τ2 when both nodes
3 and 1 have packets. Then, there exists an optimal schedule,
which is denoted as O, such that, in slot τ2 of some cycles
(e.g., L cycles denoted CL,CL−1, . . . , C1 ,where CL < CL−1
<・・・< C1), both nodes 1 and 3 have packets, but node 1 is
scheduled. We have the following modification to O. Starting

from cycle C1 + 1, find the first cycle, which is denoted cycle
c, in slot τ2 of which node 3 transmits and does not have
packet left in its buffer after the transmission; then, let node 3
transmit at slot τ2 of cycle C1, and let node 1 transmit at slot
τ2 of cycle c. The resulting schedule, which is denoted as O1,
is a feasible schedule and has the same completion time as
that of O.

Similarly, we modify O1 such that node 3 transmits in
cycle C2, whereas node 1 transmits in a later cycle. The
resulting schedule, which is denoted O2, is a feasible schedule
and has the same completion time as that of O1. This
procedure is repeated for cycles C3, . . . , CL; eventually, we
get schedule OL, which is a feasible schedule and has the
same completion time as that of O. Thus, it is also optimal.
The optimality of schedule OL contradicts our assumption
(i.e., it is not optimal to always schedule node 3 at slot τ2
when both nodes 3 and 1
have packets) since schedule OL always lets node 3 transmit
at slot τ2 when both nodes 3 and 1 have packets.

Similarly, we can prove that, when both nodes 2 and 1
have packets at slot τ1, it is optimal to let node 2 transmit.

Theorem 2 indicates that Algorithm 2 is optimal for duty-

cycled scheduling. Since duty-cycled scheduling can be
viewed as a special case of non-duty-cycled scheduling, the
completion time ofAlgorithm 2 should be not less than that of
Algorithm 1. However, in some special cases (e.g., when
nodes have the same number of packets to be sent, which may
happen when nodes periodically report their states for network
diagnosis or respond to the query of the BS), the two
algorithms have the same completion time, as shown in the
subsequent Theorems 3 and 4. In the sequel, for presentation
simplicity, we assume all algorithms in duty-cycled mode
(i.e., Algorithms 2 and 3) use the proposed working slot
assignment scheme to assign working slots to nodes.

Theorem 3: When there are N nodes and a BS in a linear

dutycycled WSN, and each node has w packets to transmit to
the BS, the completion time of Algorithm 2 is (N −1)w + 1

cycles if τ1 = T or (N −1)w cycles if τ1 < T.
Proof: At each of the first w cycles, each node other than

nodes N and 1 sends a packet and receives a packet, whereas
node N sends a packet, and node 1 receives a packet and can
send at most T – 2 packets as it has T −2 “spare” slots (those
other than slots τ1 and τ2). Therefore, at the end of cycle w,
node N has no packet. Similarly, at the end of cycle 2w, node
N −1 has no packet and so on; at the end of cycle (N −2)w,
node 3 has no packet, node 2 has w packets, and node 1 has at
most w packets (node 1 has w packets if T = 3 or one
packet ifT >3).

From cycle (N −2)w + 1 to cycle (N −1)w, node 1 can

transmit in at least two slots in each cycle. If τ1 = T (i.e., the
working slot of node 1 is at the end of a cycle), at the end of
cycle (N −1)w, node 2 has no packet and node 1 has one
packet. Then, Algorithm 2 takes one more cycle to deliver the
packet in node 1 to the BS. Therefore, the completion time of
data collection is (N −1)w + 1 cycles. If τ1 < T, at the end of

cycle (N −1)w, nodes 2 and 1 both have no packet. Therefore,

the completion time is (N −1)w cycles.

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 01 2015 www.researchscript.com 29

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

Theorem 4: For a linear WSN where each node (except
the BS) has w packets, the completion time of Algorithm 2
with T = 3 and τ1 <3 is the same as that of Algorithm 1.

Proof: Denote the number of nodes (except the BS) as N.
For Algorithm 2 with T = 3 and τ1 <3, the completion time is
3(N −1)w slots, according to Theorem 3.

Next, we assume N is a multiple of 3. The scenarios when
N is not a multiple of 3 can be treated similarly.

For Algorithm 1, we have the following:
1) At the end of slot w, the numbers of packets at nodes 1,
2, . . . , N are 0,w, 2w, 0,w, 2w, . . . , 0,w, 2w, 0,w,w,
respectively.
2) At the end of slot 3w, the numbers of packets at nodes
1, 2, . . . , N are 0, 0, 3w, 0, 0, 3w, . . . , 0, 0, 3w, 0, 0,w,
respectively, and there are a total of (N −2)w packets
remaining at the nodes.
3) Starting from slot 3w + 1, Algorithm 1 delivers a

packet to the BS after every three slots.

Therefore, the completion time of Algorithm 1 is 3w + 3

×(N −2)w = 3(N −1)w slots, the same as that of Algorithm 2.
For a more general scenario (i.e., nodes have different

numbers of packets), the difference of completion time of
Algorithm 2 with T = 3 and Algorithm 1 is bounded, as will
be shown in Section III-B.

B. Distributed Algorithm in Duty-Cycled Case

To implement Algorithm 2 in a distributed manner, the
major challenge is that node 1 needs to know whether nodes 3
and 2 have packets to send so that it can “steal” unused slots
by nodes 3 and 2, which is hard to achieve in a distributed
manner. Accordingly, we let node 1 only steal unused slots by
node 2 as follows. At the very beginning of slot τ1, when node
1 wakes up and senses the channel to be idle (which means
node 2 is not transmitting), then node 1 transmits at slot τ1.
The resulted distributed algorithm is called Algorithm 3. Since
the channel sensing time can be very short (e.g., in IEEE
802.11 medium access control standard, 20 μs is more than
sufficient to detect transmission of other nodes, whereas
typical time slot duration in WSNs is at least a few dozen
milliseconds), this sensing overhead is negligible.

Define fa(w1,w2, . . . , wN) as the completion time of

Algorithm a (a is algorithm index) for a linear WSN with node
i(i = 1, 2, . . . , N) originally having wi packets. The following
theorem gives a performance
bound for Algorithm 3.

Theorem 5: For Algorithm 3 with T = 3 and with the

proposed working slot assignment scheme, we have
f3(w1,w2, . . . , wN) ≤f1(w1,w2, . . . , wN) + 3(w1 + w2) + 2.

 (1)

Proof: Assume that, using the working slot assignment
scheme, the working slots of the nodes are (τ1, τ2, . . . , τN).

We have
f3(w1,w2, . . . , wN)
≤f3(0, 0,w3,w4, . . . , wN) + f3(w1,w2, 0, 0, . . . , 0)

≤f3(0, 0,w3,w4, . . . , wN) + 3(w1 + w2).
 (2)

Here, the second inequality is because, when only nodes 2
and 1 have packets, Algorithm 3’s completion time (units:
slots) is at most three times the number of packets in nodes 2
and 1.

Then, consider the following modification of Algorithm 1.
Change Step 6 from “if Buffer[i] >0 then” to “if Buffer[i] >0
and node i does not transmit in the previous two slots (slots t
−1 and t −2) then”. The resulting algorithm is called
Algorithm 4. It can be proven that, for a linear WSN in which
nodes 2 and 1 do not have packets, Algorithm 4 is optimal.
The proof is almost the same as that of Theorem 1 and is thus
omitted here. Since Algorithm 1 is also optimal, we have f4(0,
0,w3,w4, . . . , wN) = f1(0, 0,w3,w4, . . . , wN).

Consider a linear WSN with (0, 0,w3,w4, . . . , wN) as the

vector of packets originally at the nodes. Consider that
Algorithm 4 is used for the WSN. Then, in the schedule, each
node transmits at most once in any three consecutive slots. We
group every three slots into a cycle. In the schedule of
Algorithm 4, for each transmission of node i(∈ {1, 2, . . . ,
N}), if the transmission time is not slot τi−1 of a cycle (here,
τ0 ∈ {1, 2, 3} \ {τ2, τ1}), then we postpone the transmission
time to the next slot τi−1 (which should be either in the
current cycle or in the next cycle). Therefore, each
transmission is postponed by at most two slots. The resulted
transmission schedule is still a feasible schedule. In the
postponed schedule, node i only transmits at slot τi−1. Thus,
the postponed schedule’s completion time is not less than the
completion time of Algorithm 3. In other words, we have f3(0,
0,w3, . . . , wN) ≤f4(0, 0,w3, . . . , wN) + 2 (recalling that each
transmission is postponed by at most two slots).

Based on the above results and f1(0, 0,w3,w4, . . . , wN)

≤f1(w1,w2, . . . , wN), we have (1).

Theorem 5 indicates that the completion time difference

between Algorithm 3 with T = 3 and Algorithm 1 is bounded
by 3(w1 + w2) + 2. Since Algorithm 3 is implemented in a
duty-cycled mode, its completion time is not less than that of
Algorithm 2, which is optimal in duty-cycled mode.
Therefore, the completion time difference between Algorithm
2 with T = 3 and Algorithm 1 is also bounded by 3(w1 + w2)
+ 2.

Generally, for Algorithm 3, a larger cycle length T can

achieve more energy saving (since a node can be in sleeping
state for longer time) but may increase the completion time.
On the other hand, a smaller T can benefit the completion time
but consumes more energy.

Next, we extend Algorithm 3 to a low duty-cycled case by

using adaptive duty-cycle technique, to save energy and
reduce completion time. Specifically, when the WSN is set up,
an idle mode is used with a large cycle length Tidle, which is
a multiple of 3. The working slots are assigned according to
the proposed working slot assignment scheme. In the idle
mode, once a node, e.g., node i with working slot τi, receives
a packet (i.e., node i + 1 detects an event or has received
packets from node i + 2), node i will forward the packet to the
next
node (node i −1), and change to working mode with cycle

length Twork = 3 and use working slot ((τi −1) mod 3) + 1.

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 01 2015 www.researchscript.com 30

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

Node i also sets up a timer (e.g., 2Tidle slots) for the working
mode. If no further packet is received within the timer
duration, then node i changes back to the idle mode with cycle
length Tidle. When Tidle is a multiple of 3, it can be
guaranteed that, during the switching between the idle mode
and the working mode, there is no conflict in the working
slots of any three consecutive nodes.

The adaptive duty-cycle technique can strike a good

balance between the completion time of data collection and
network lifetime. When there is no traffic, nodes work in the
idle mode with a large cycle length Tidle to save energy.
When there is traffic, the network changes to working mode
with Twork = 3 to achieve fast data collection (recalling that
completion time of Algorithm 3 with T = 3 is close to the
minimum completion time, with a bounded difference, as
indicated in Theorem 5), and after all traffic has been
delivered, the network returns to the idle mode to save energy.

C. Discussion

There are still some issues when the distributed algorithm

(Algorithm 3) is implemented in real applications. One issue
is that time synchronization is needed among nodes to
implement slotted transmissions. However, only much loose
time synchronization is needed in our distributed algorithm. A
node, e.g., node i, only needs to synchronize with its next hop,
i.e., node i −1, at the initialization stage. Such time
synchronization can be achieved by a time synchronization
protocol such as the flooding time synchronization protocol
(FTSP) in [8] with only a few messages (because of the linear
nature of the considered WSNs). After initial synchronization,
by the FTSP, nodes i and i −1 can have clock synchronization
as accurate as 2.24 μs through a few packet exchanges
between them every 15 min. Therefore, it can be seen that the
cost of time synchronization is low in our distributed
algorithm.

Another issue is unreliable wireless communication links,

which may cause transmission failures and retransmissions
will be needed. Our Algorithm 3 can still work with
transmission failures, as follows. In a linear WSN in which
node i(i = 1, 2, . . . , N) originally has wi packets to be sent to
the BS, the total number of different packets that should be
transmitted by node i is_Nl=i wl. Considering transmission
failures, for_Nl=i wldifferent packets, denote qi as the
expected total number of node i’s
transmissions/retransmissions and denote vi = qi −_Nl=i wl

≥0. Then, the problem is equivalent to data collection in a
linear WSN in which node i(i = 1, 2, . . . , N) originally has wi
+vi packets to be sent to the BS and all transmissions are
successful.

Then, the objective of our algorithm is to minimize the

expected data collection time. One shortcoming of linear
topologies is that any node or link failure (which cannot be
solved by retransmissions, such as a hardware problem or
battery depletion) may disconnect the network. However, as
previously mentioned, there are many applications in which
the WSNs have linear topologies, and it is not cost effective to
deploy a dense mesh network. To solve the node/link failure
problem in a linear WSN, we can deploy some nodes as
backup nodes, which will become active if node/link failures
happen. Even if there is no backup node, nodes around the

failed nodes can detect the link failure and take some actions
to solve the problem (such as increase the transmission
power).

IV. PERFORMANCE EVALUATION

We evaluate the proposed algorithms over a customized
C/C++ simulator. The number of nodes N takes values from
50 to 100. Two typical traffic models are simulated. One is
periodic reporting and the other is event detection. For
periodic reporting, nodes report data to the BS every 30 min.
In each reporting, for each node i(i ∈{1, 2, . . . , N}), wi is
randomly chosen from 1 to 9. For event detection, assume
events occur according to a Poisson process with rate λ = 2
per hour, which implies that event interarrival times have
exponential distribution with a mean value of 30 min. When
an event happens, wi randomly takes values from {0, 1, 2, 3}
with probability {50%, 16.7%, 16.7%, 16.7%}. Unreliable
wireless links are also simulated by setting

Fig. 3. Completion time of different algorithms for periodic

reporting every 30 min.

Fig. 4. Completion time of different algorithms for event
detection with mean event interarrival time being 30 min.

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 01 2015 www.researchscript.com 31

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

the successful probability of a transmission/retransmission to
be 0.8. The length of one slot is 20 ms, and the statistics are
collected for 120 h of network time.

Figs. 3 and 4 show the average completion time of

Algorithms 1 and 2 with T = 3, and Algorithm 3 with T = 3
and adaptive duty cycle (with Tidle = 21 and Tidle = 99, i.e.,
the initial duty cycle is approximately 5% and 1%,
respectively), for periodic reporting and event detection,
respectively. We also simulate the scheme in [2], and confirm
that our Algorithm 1 and the scheme in [2] have the same
completion time when the transmission links are reliable
(although the schedules in the two algorithms are different).
Therefore, we do not show the simulation results of the
scheme in [2], and only Algorithm 1 is shown as the
benchmark. The upper bound of completion time of
Algorithm 3 with T = 3 (as indicated in Theorem 5) is also
shown in the two figures. In the two figures, the histogram
means the average completion time with reliable transmission
links, whereas the line
segments above the histogram mean the completion time
increase due to unreliable transmission links.

From the two figures, it can be seen that Algorithm 2 with

T = 3 has slightly larger completion time than Algorithm 1,
whereas Algorithm 3’s completion time with T = 3 is very
close to that of Algorithm 2. Compared with Algorithm 1, the
completion time

Fig. 5. Normalized network lifetime of Algorithm 3.

of Algorithm 3 with Tidle = 21 increases by no more than 2%
(3% for unreliable links) for periodic reporting, and it
increases by no more than 10% (17% for unreliable links) for
event detection. Algorithm 3 with Tidle = 99 still performs
well for periodic reporting, whereas its completion time
increases apparently for event detection. The reason is as
follows. For periodic reporting, as all nodes have packets to
send, they can quickly switch to working mode. For event
detection, the traffic is sparsely distributed along the linear
network, and it takes some slots (e.g., half a cycle on average)
for downstream nodes to change to working mode. In
addition, it takes much more slots when transmission links are
unreliable, as indicated by Fig. 4.

We next evaluate the network lifetime of Algorithm 3
with T = 3 and with an adaptive duty cycle. In each cycle, a

node is in receiving state at its working slot, in transmitting
state if it transmits at the working slot of its next-hop
neighbor, or in sleeping state at other slots. According to [9],
the power consumption for receiving and
transmitting in a WSN are similar, whereas the power
consumption in sleeping state is very small and can be thus
neglected. Therefore, in our simulation, we assume that the
energy consumption of a node at a time slot is a constant
positive value if the node is in transmitting or receiving state,
and the energy consumption is zero when the node is in
sleeping state. Since all packets have to go through node 1, we
take the lifetime of node 1 as the network lifetime. We regard
the lifetime of node 1 when it is always in receiving or
transmitting state as one, and we measure the normalized
network lifetime of our Algorithm 3 with T = 3 and with an
adaptive duty cycle (with Tidle = 21 and Tidle = 99), as
shown in Fig. 5. In the figure, the line segment under each
discrete mark means the decrease in network lifetime due to
unreliable transmission links. It can be seen that, for a given
traffic model (periodic reporting or event detection), the
network lifetime is approximately proportional to the cycle
length. The network lifetime tends to decrease as the number
of nodes in the network increases, as shown in Fig. 5. This is
reasonable because, with more nodes, more traffic may be
generated, which eventually needs to be transmitted by node
1.

V. CONCLUSION

For data collection in a linear WSN, we first provide an
optimal solution for non-duty-cycled case as a benchmark.
Then, we propose an optimal algorithm and a distributed
algorithm for duty-cycled case. Our results will provide
theoretical performance bounds for data collection time in
linear WSNs. The insights gained in our proposed algorithms
can be helpful for developing data collection algorithms for
WSNs with other topologies.

REFERENCES
[1] S. C. Ergen and P. Varaiya, “TDMA scheduling
algorithms for wireless sensor networks,” Wireless Netw., vol.
16, no. 4, pp. 985–997, May 2010.
[2] C. Florens and R. McEliece, “Packets distribution
algorithms for sensor networks,” in Proc. IEEE INFOCOM,
2003, pp. 1063–1072.
[3] S. Gandham, Y. Zhang, and Q. Huang, “Distributed time-
optimal scheduling for convergecast in wireless sensor
networks,” Comput. Netw., vol. 52, no. 3, pp. 610–629, Feb.
2008.
[4] O. D. Incel, A. Ghosh, B. Krishnamachari, and K.
Chintalapudi, “Fast data collection in tree-based wireless
sensor networks,” IEEE Trans. Mobile Comput., vol. 11, no.
1, pp. 86–99, Jan. 2012.
[5] Y. Gu and T. He, “Dynamic switching-based data
forwarding for lowduty- cycle wireless sensor networks,”
IEEE Trans. Mobile Comput., vol. 10, no. 12, pp. 1741–1754,
Dec. 2011.
[6] S. Lai and B. Ravindran, “On distributed time-dependent
shortest paths over duty-cycled wireless sensor networks,” in
Proc. IEEE INFOCOM, 2010, pp. 1–9.
[7] S. Xiong, J. Li, M. Li, J. Wang, and Y. Liu, “Multiple task
scheduling for low-duty-cycled wireless sensor networks,” in
Proc. IEEE INFOCOM, 2011, pp. 1323–1331.
[8] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The
flooding time synchronization protocol,” in Proc. 2nd Int.
Conf. Embedded Netw. SenSys, 2004, pp. 39–49.

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 01 2015 www.researchscript.com 32

