
            IJRCS - International Journal of Research in Computer Science                       ISSN: 2349-3828     

Fast Data Collection in Wireless Sensor Networks 
Pradeep G1 

1 (P.G. Scholar,Department of Computer Science and Engineering, RVS College of Engineering and Technology, 
Coimbatore, India) 

1pradeep.be2012@gmail.com  

Abstract: We study fast data collection in linear duty-cycled wireless sensor networks (WSNs). We first present a benchmark 
algorithm that can achieve optimality in a general case (i.e., in non-duty-cycled case). Then, based on the insights obtained in the 
general case, we propose an optimal algorithm and a distributed algorithm for the case when each sensor only works at one slot in a 
cycle in duty-cycled mode. It is proven that the two latter algorithms with cycle length equal to 3 have bounded performance gap to the 
benchmark algorithm in the non-duty-cycled case. Simulation results are used to demonstrate the effectiveness of the proposed 
algorithms 
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I. INTRODUCTION 

One essential mission of a wireless sensor network (WSN) 
is to efficiently deliver data collected by sensors to a base 
station (BS). In many WSN applications (e.g., the WSNs 
deployed along the roadside to detect car accidents, animals, 
and other dangerous road conditions), it is desired that the 
data be delivered as soon as possible, to minimize the 
completion time of data collection. The completion time may 
be affected by the following factors. First, a sensor is usually 
equipped with a half-duplex transceiver, which means it 
cannot send and receive simultaneously. Second, collisions 
may happen due to interference among sensors’ transmissions. 

Generally, minimum-time data collection in WSNs is an 
NP complete problem. Nevertheless, some optimal algorithms 
(noting that an optimal algorithm in this paper means that the 
algorithm minimizes the completion time of data collection) 
have been provided in the literature for some special cases. 
The work gives an optimal data collection algorithm for a 
linear WSN. The data collection problem is transformed into a 
data distribution problem, and then, the schedules in the data 
distribution problem are mapped into an optimal data 
collection solution. For a linear WSN in which each sensor 
has one packet to send, a distributed data collection algorithm 
is proposed, in which sensors rotate among three states 
(“transmission,” “idle,” and “receive”), and their initial states 
depend on their distance to the BS. Optimal data collection 
algorithms are given for a WSN with a tree topology, by 
assuming that interference is eliminated by power control or 
multichannel scheduling. 

All above works assume that sensors are ready to receive 
or transmit packets at all times (i.e., they are in non-duty-
cycled mode). However, usually, WSNs are expected to work 
for a long time (e.g., several months or even several years). If 
a sensor keeps running continuously, it may run out of battery 
in a few days. Therefore, a viable solution is to apply a duty-
cycled mode. During each cycle of a number of slots, each 
sensor works in one or more working slots and sleeps in other 
slots. In particular, if each sensor is allowed to work at only 
one slot in a cycle, the working mode of the WSN is called 
low-power listening mode. Recently, duty-cycled WSNs have 
attracted much research attention. The major research efforts 
focus on routing and load balancing. To the best of our 
knowledge, there is no work in the literature that addresses 
fast data collection in duty-cycled WSNs considering the 
aforementioned two limiting factors (i.e., half duplex 
transceivers and interference). 

To fill this research gap, in this paper, we investigate 
minimum-time data collection in duty-cycled WSNs with 
linear topologies, such as WSNs deployed along gas pipelines 
(to detect gas leakage), highways (to detect accidents), and 
underground tunnels (to detect gas and/or water), etc. To gain 
insights for designing data collection algorithms in duty-
cycled WSNs, we first present a benchmark algorithm that is 
optimal in a more general case, i.e., in non-duty-cycled case. 
Then, based on insights obtained in the benchmark algorithm, 
we design an optimal algorithm and a distributed algorithm 
for duty-cycled case whose performance gap to the benchmark 
algorithm is bounded if the cycle length is equal to 3. 
Although the work also gives a centralized optimal solution 
for a non-duty-cycled linear WSN, the insights may not be 
able to be used in a duty-cycled WSN. This is because the 
scheme is based on the symmetry property of the data 
collection schedule (from sensors to the BS) and the data 
distribution schedule (from the BS to sensors). The symmetry 
property, which holds in a non-duty-cycled WSN, no longer 
holds for a duty-cycled WSN due to the fact that data 
transmission in a duty cycled WSN is receiver based (i.e., a 
node can receive packets only at its working slots, as shown in 
Section III). Noting that the optimal algorithm for linear non-
duty-cycled WSNs is generally not unique, we solve the 
problem from a new perspective in this paper and provide 
insights that we may achieve optimality by giving higher 
priority to nodes closer to the BS and making simultaneous 
transmissions apart by at least three hops. As can be shown in 
Section III, these insights can be used in a duty-cycled WSN. 
Moreover, by using our proposed benchmark algorithm as a 
reference point, we show in Section III-B that our optimal 
duty-cycled algorithm and distributed duty-cycled algorithm 
have bounded performance gap to the optimal performance in 
the general case (i.e., in a non-duty-cycled WNS), whereas the 
performance bounds cannot be derived if we use the algorithm 
as a reference point for comparison. 

 
II. BENCHMARK ALGORITHM IN NON-DUTY-
CYCLED CASE 

Consider a linear WSN as shown in Fig. 1. The network is 
denoted G = (V, E), with V = {0, 1, 2, . . . , N} being the set of 
nodes and E = {(i, i −1)|1 ≤i ≤N} being the set of wireless 
links. Node 0 is the BS, and node i is i hops away from the 
BS.  
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Fig. 1. Considered linear WSN. 

 
Each node (e.g., node i) is equipped with an 

omnidirectional antenna and a half-duplex transceiver, and is 
able to communicate directly only with its two closest 
neighbors (node i + 1 on the left-hand side and node i – 1 on 
the right-hand side).1 Assume node i has wi(≥0) packets to be 
sent to the BS. For presentation simplicity, the packets are 
assigned with increasing indexes from node 1 to node N. The 
w1 packets of node 1 are indexed as 1, 2, . . . , w1, the w2 
packets of node 2 are indexed as w1 + 1,w1 + 2, . . . , w1 + 
w2, and so on. Each node, e.g., node i, only transmits to its 
next-hop node, i.e., node i −1. Without loss of generality, 
when a node transmits to its next hop, it always sends the 
packet with the smallest index among all packets at its buffer 
(including its own packets and its received packets from other 
nodes). Therefore, during the data collection, it is impossible 
that a packet with a larger index is closer to the BS than a 
packet with a smaller index. Therefore, at the BS, packet 1 
arrives first, whereas the packet with the largest index arrives 
last. Our target is an optimal data collection algorithm that has 
the minimum completion time for all the packets to arrive at 
the BS.  

Similar to [1]–[4], time is divided into fixed-length slots, 
and in each time slot, multiple nodes may be scheduled to 
transmit simultaneously. Here, when we say a node is 
scheduled, it means the node can transmit 
a packet.2 At a time slot, when node i is scheduled to transmit 
(to node i −1), nodes i + 1 and i −1 cannot be scheduled to 

transmit (to nodes i and i −2, respectively) due to the half-

duplex transceiver, and nodes i + 2 and i −2 cannot be 

scheduled to transmit (to nodes i + 1 and i −3, respectively) 
due to the hidden terminal problem. In other words, among 
any three consecutive nodes, only one node can be scheduled 
to transmit at a time slot. 

For a data collection algorithm, when the packet with the 
largest index arrives at node 3 at a time slot (e.g., slot t), all 
packets that have not arrived at the BS yet are with nodes 3, 2, 
and 1. Since only one node can transmit among these three 
nodes, it does not change the completion time if we arbitrarily 
schedule the remaining packets in time slots starting from slot 
t + 1. Since our target is the minimal completion time of 
gathering all packets, without loss of generality, we consider 
only data collection algorithms satisfying the following last-3-
node assumption.When the packet with the largest index 
arrives at node 3 at a time slot, at any subsequent slot, the data 
collection algorithms always schedule the remaining packet 
with the smallest index to be sent. 

Note that all assumptions related to the packet index are 
made to simplify presentation, and they are not mandatory for 
the proposed algorithms because our goal is to minimize the 
completion time of data collection. For example, if node i is 
scheduled to transmit by an algorithm, it can transmit any 
arbitrary packet in its buffer without changing the completion 
time of the algorithm.  
 

 
Fig. 2. Greedy data collection algorithm for a seven-node 

linear WSN. 
 

 
 

Since nodes closer to the BS have more traffic load, we 
propose Algorithm 1, which is a greedy algorithm that gives 
priority to those nodes. In Algorithm 1, Buffer[i] (i = 0, 1, . . . 
, N) denotes the number of packets at the buffer of node i. 
Therefore, at the beginning, Buffer[0] = 0, and Buffer[i] = wi, 
i = 1, 2, . . . , N. In the algorithm, t denotes the time slot index. 
At t = 1, we first schedule the node (e.g., node i) that has 
packets and is closest to the BS. Then, node i + 3 is checked 
(in line 10 of Algorithm 1) (recalling that, among any three 
consecutive nodes, only one node can be scheduled to transmit 
at a time slot). If the node has packets, then it is scheduled to 
transmit at the slot; otherwise, the node that is one-hop farther 
away from the BS is checked (in line 12 of Algorithm 1). This 
process is repeated until no more nodes can be scheduled, 
which completes the scheduling for t = 1. For t = 2, 3, . . ., the 
same procedure is repeated until all the packets arrive at the 
BS. Fig. 2 shows an example in a seven-node linear WSN. At 
the nodes, the numbers inside the brackets {・} are the 
indexes of packets generated at the corresponding nodes. Each 
arrow means a transmission, whereas the number above the 
arrow means the index of the packet that is transmitted. The 
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scale on the right represents the time slot scale. It can be seen 
that the data collection takes 15 time slots. 

In data collection, if packet k is generated at node i, its 
transmission from node i to the BS can be described by time 
schedule (tki,/ tki−1, . . . , tk3, tk2, tk1), where tkj(j = i, i −1, . 
. . , 2, 1) is the index of the slot when node j transmits packet 
k. For instance, for the scheduling shown in Fig. 2, the time 
schedules of packets 1, 2, and 6 are (1), (2, 3), and (1, 4, 8, 9, 
13, 14, 15), respectively. 

Lemma 1: Consider a linear WSN with N nodes and K 
packets to be transmitted to the BS. Assume packet K is 
generated at node i. For an optimal data collection solution of 
the network, denote tK1 as the transmission moment (slot 
index) of packet K at node 1, which is also the minimum 
completion time of data collection of 
the K packets. Suppose another packet, which is denoted as K 
+ 1, is added at node j where j ≥i. For optimal data collection 
of the K + 1 packets, denote ˆtln (n = 1, 2, . . . , N; l = 1, 2, . . . 
, K + 1) as the index of the slot when node n transmits packet 
l. Then, ˆtK+1 1 is the minimum completion time of the data 
collection. We have three cases: 1) ˆtK+1 1 = tK

1+ 1 if i = j = 1; 
2) ˆtK+1

1= tK
1+ 2 if i = j = 2 ori = 1, j = 2; and 3) ˆtK+1

1≥tK
1+ 3 

if j ≥3 and j ≥i. 
Proof: Nodes 3, 2, and 1 form a bottleneck of the data 

collection because, at any slot, only one node among them is 
allowed to transmit. Therefore, Cases 1 and 2 are obviously 
true. For Case 3, at an optimal data collection solution for the 
K + 1 packets, the time when node 3 transmits packet K + 1, 
which is denoted as ˆtK+1

3, must be later than tK
1because, 

otherwise, we can remove packet K + 1 from the transmission 
schedule and get a schedule for K packets that has a 
completion time less than tK

1(recalling that, based on the last-
3- node assumption, when packet K + 1 is sent at node 3, all 
other packets have already arrived at the BS). It takes two 
more slots for packet K + 1 to be sent from node 2 to the BS. 
Therefore, ˆtK+1

1=ˆtK+1
3+ 2 ≥tK

1+ 3 if j ≥3 and j ≥i.  
 
Theorem 1: Algorithm 1 is optimal. 

Proof: We use mathematical induction for proving. 
If there is only one packet to transmit, it is apparent that 

Algorithm 1 uses minimum time slots in data collection. 
Suppose Algorithm 1 uses minimum time slots in data 

collection of any k packets in an N-node network. Now, we 
use Algorithm 1 to schedule k + 1 packets in the N-node 
network. We denote ˆtl

nas the scheduling time of packet l(∈ 

{1, 2, . . . , k,k + 1}) at node n(∈{1, 2, . . . , N}). We denote 

tl
nas the scheduling time of packet l(∈{1, 2, . . . , k}) at node n 

when Algorithm 1 is applied to schedule only packets 1, 2, . . 
., k. Then, tk

1 is the minimum number of slots for data 
collection of packets 1, 2, . . ., k. Apparently tl

n= ˆtl
n, n ∈ {1, . . 

. , N}, 
l ∈ {1, . . . , k}. There are two cases as follows. 

Case 1: Suppose packets k + 1 and k are both generated at 
node i, i >3 (for i ≤3, it is easy to prove). 

Consider that Algorithm 1 is applied for the k + 1 packets. 
It can be seen that, at any moment, packet k + 1 is within three 
hops from packet k. Therefore, at the beginning of slot 
ˆtk

3(i.e., the slot when packet k is sent by node 3 to node 2), 
packet k + 1 is with nodes 6, 5, 4, or 3, and all other packets 
(packets 1, 2, . . . , k −1) have already arrived at the BS. Then, 

Algorithm 1 takes the subsequent two slots, which are slots 
ˆtk

2=( ˆtk3+ 1) and ˆtk
1(= ˆtk

3+ 2), to send packet k from node 2 
to the BS. At the end of slot ˆtk

1, packet k + 1 should be 
withnode 3. Since all other packets have arrived at the BS at 
this moment,Algorithm 1 takes three more slots to deliver 
packet k+1 from node 3 to the BS. In other words, ˆtk+1

1= ˆtk
1+ 

3. Recall that ˆtk
1= tk

1(the minimum time slots needed for data 
collection of packets 1, 2, . . . , k). From Lemma 1, it can be 
concluded that ˆtk+1

1is the minimum number of slots for data 
collection of packets 1, 2, . . ., k + 1. 

Case 2: Suppose packets k+1 and k are generated at nodes 
j and i, respectively, with j > i.  

When j ≤i + 3, it means that packet k + 1 is initially within 
three hops from packet k. Then, when Algorithm 1 is used for 
the k + 1 packets, at any slot, packet k + 1 is always within 
three hops from packet k. Therefore, at the beginning of slot 
ˆtk

3, packet k + 1 is with nodes 6, 5, 4, or 3. Similar to the 
proof in Case 1, it can be proven that ˆtk+1

1is the minimum 
number of slots for data collection of packets 1, 2, . . ., k + 1. 
Next, we consider the scenario when j > i + 3. Since there are 
no packets between nodes j and i, by Algorithm 1, packet k + 
1 is transmitted in consecutive slots, starting from slot 1 until 
packet k + 1 is three hops away from packet k. If ˆtk

3≤j −6 
(i.e.,when packet k is scheduled at node 3, packet k + 1 cannot 
reach node 6), packet k + 1 is always more than three hops 
away from packet k; thus, packet k + 1 is scheduled 
continuously from slot 1 until it arrives at the BS at slot ˆtk+1

1= 
j. Apparently, this completion time of datacollection of the k + 
1 packets is minimum. If ˆtk

3> j −6, it means that packet k + 1 
can be within three hops away from packet k at a specific slot. 
Then, similar to the proof in Case 1, Algorithm 1 uses the 
minimum number of slots for data collection of the k + 1 
packets.  

The major drawback of Algorithm 1 is that it is a 
centralized algorithm and needs global information. 
Therefore, it is to be used to provide design insights and used 
as a comparison benchmark in Section III. 

 
III. OPTIMAL AND DISTRIBUTED ALGORITHMS IN 
DUTY-CYCLED CASE 

 
A. Optimal Algorithm in Duty-Cycled Case 
 

In a duty-cycled scheduling, consider that each node 
(except the BS) is assigned one working slot in a cycle of T 
slots. During each cycle, a node (e.g., node i) wakes up at its 
working slot to receive a packet (if any) transmitted from node 
i + 1. Node i can also wake up to transmit a packet to its next 
hop neighbor, i.e., node i −1, at the working slot of node i −1. 
In other slots, node i is in sleeping state to save power. The 
BS is assumed to be in receiving state all the time. Similar 
assumptions are also adopted. Note that the transmission is 
receiver based: a feasible transmission from node i to node i 
−1 at slot t of a cycle must satisfy two conditions: 1) slot t is 

the working slot of node i −1; and 2) node I has packets to 

transmit. Denote the working slot of node i as τi ∈ {1, 2, . . . , 

T }, and assume T ≥3. The duty-cycled mode saves nodes 
energy butmay increase the completion time of data collection 
because a node only receives a packet at its working slot in 
each cycle. Recall that one insight in Algorithm 1 is that 
simultaneous transmissions should be apart by at least three 
hops. Therefore, the working slots of the nodes should be 
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assigned such that the working slots of any three consecutive 
nodes are different from each other. This can be done by a 
working slot assignment scheme when the WSN is initialized. 
To achieve this, we propose the following working slot 
assignment scheme for the initialization stage of a linear WSN 
with T ≥3. When the WSN is initialized, the BS sends a 
SLOT_ASSIGN packet, in which there is a field called 
WORKING_SLOT with initial value arbitrarily selected from 
{1, 2, . . . , T }. When a node receives the packet, it takes the 
value in theWORKING_SLOT field as its working slot index. 
The node then forwards the packet to the other side of the 
network but with the value in the WORKING_SLOT field 
reduced by 1. If the value equals 0 after the reduction, the 
value is set to T instead. By this working slot assignment 
scheme, the working slots of any T consecutive nodes are 
different from each other.  

The following algorithm, which is denoted as Algorithm 
2, is proposed. 

1) Node i(2 ≤i ≤N) transmits at slot τi−1 if it has 
packets. 

2) At any slot other than slots τ2 and τ1, node 1, if it 
has packets, transmits a packet to the BS. 

3) At slot τ2, node 1, if it has packets, transmits when 
node 3 has no packet. 

4) At slot τ1, node 1, if it has packets, transmits when 
node 2 has no packet. 

In other words, in Algorithm 2, each node (except node 1) 
can transmit to its next-hop node at the working slot of the 
next-hop node, whereas node 1 can transmit to the BS at slots 
when nodes 3 and 2 do not transmit. 

 
In Algorithm 2, node 1 is given more chances to transmit 

than other nodes. Therefore, Algorithm 2 is also greedy. We 
have the following theorem. 

 
Theorem 2: Algorithm 2 uses a minimum number of slots 

in data collection in a linear WSN with a given working slot 
assignment in which each node, except the BS, is assigned 
with one working slot in a cycle, and the working slots of any 
three consecutive nodes are different from each other. 

Proof: Consider node i, i ∈ {4, 5, . . . , N}. Since node i’s 

receiving node, i.e., node i −1, has a different working slot 
from working slots of those nodes that are within two hops of 
node i −1, it is optimal for node i, if it has packets, to transmit 

a packet to node i −1 at the working slot of node i −1. 
Therefore, it is optimal to apply Part 1 of Algorithm 2 to 
nodes 4, 5, . . ., N. Next, we consider nodes 3, 2, and 1. The 
receiving node of nodes 3 and 2 are nodes 2 and 1, with 
working slot being τ2 and τ1, respectively. The receiving node 
of node 1 is the BS, which can receive at any slot. Then, 
apparently, it is optimal to apply Part 2 of Algorithm 2. Next, 
we prove that, for slot τ2, it is optimal to apply Part 1 of 
Algorithm 2 to node 3, and apply Part 3 of Algorithm 2 to 
node 1. In other words, we need to prove that, when both 
nodes 3 and 1 have packets at slot τ2, it is optimal to let node 
3 transmit. We use proof by contradiction. Suppose it is not 
optimal to always schedule node 3 at slot τ2 when both nodes 
3 and 1 have packets. Then, there exists an optimal schedule, 
which is denoted as O, such that, in slot τ2 of some cycles 
(e.g., L cycles denoted CL,CL−1, . . . , C1 ,where CL < CL−1 
<・・・< C1), both nodes 1 and 3 have packets, but node 1 is 
scheduled. We have the following modification to O. Starting 

from cycle C1 + 1, find the first cycle, which is denoted cycle 
c, in slot τ2 of which node 3 transmits and does not have 
packet left in its buffer after the transmission; then, let node 3 
transmit at slot τ2 of cycle C1, and let node 1 transmit at slot 
τ2 of cycle c. The resulting schedule, which is denoted as O1, 
is a feasible schedule and has the same completion time as 
that of O.  

Similarly, we modify O1 such that node 3 transmits in 
cycle C2, whereas node 1 transmits in a later cycle. The 
resulting schedule, which is denoted O2, is a feasible schedule 
and has the same completion time as that of O1. This 
procedure is repeated for cycles C3, . . . , CL; eventually, we 
get schedule OL, which is a feasible schedule and has the 
same completion time as that of O. Thus, it is also optimal. 
The optimality of schedule OL contradicts our assumption 
(i.e., it is not optimal to always schedule node 3 at slot τ2 
when both nodes 3 and 1 
have packets) since schedule OL always lets node 3 transmit 
at slot τ2 when both nodes 3 and 1 have packets. 

Similarly, we can prove that, when both nodes 2 and 1 
have packets at slot τ1, it is optimal to let node 2 transmit. 

 
Theorem 2 indicates that Algorithm 2 is optimal for duty-

cycled scheduling. Since duty-cycled scheduling can be 
viewed as a special case of non-duty-cycled scheduling, the 
completion time ofAlgorithm 2 should be not less than that of 
Algorithm 1. However, in some special cases (e.g., when 
nodes have the same number of packets to be sent, which may 
happen when nodes periodically report their states for network 
diagnosis or respond to the query of the BS), the two 
algorithms have the same completion time, as shown in the 
subsequent Theorems 3 and 4. In the sequel, for presentation 
simplicity, we assume all algorithms in duty-cycled mode 
(i.e., Algorithms 2 and 3) use the proposed working slot 
assignment scheme to assign working slots to nodes. 

 
Theorem 3: When there are N nodes and a BS in a linear 

dutycycled WSN, and each node has w packets to transmit to 
the BS, the completion time of Algorithm 2 is (N −1)w + 1 

cycles if τ1 = T or (N −1)w cycles if τ1 < T. 
Proof: At each of the first w cycles, each node other than 

nodes N and 1 sends a packet and receives a packet, whereas 
node N sends a packet, and node 1 receives a packet and can 
send at most T – 2 packets as it has T −2 “spare” slots (those 
other than slots τ1 and τ2). Therefore, at the end of cycle w, 
node N has no packet. Similarly, at the end of cycle 2w, node 
N −1 has no packet and so on; at the end of cycle (N −2)w, 
node 3 has no packet, node 2 has w packets, and node 1 has at 
most w packets (node 1 has w packets if T = 3 or one 
packet ifT >3). 

 
From cycle (N −2)w + 1 to cycle (N −1)w, node 1 can 

transmit in at least two slots in each cycle. If τ1 = T (i.e., the 
working slot of node 1 is at the end of a cycle), at the end of 
cycle (N −1)w, node 2 has no packet and node 1 has one 
packet. Then, Algorithm 2 takes one more cycle to deliver the 
packet in node 1 to the BS. Therefore, the completion time of 
data collection is (N −1)w + 1 cycles. If τ1 < T, at the end of 

cycle (N −1)w, nodes 2 and 1 both have no packet. Therefore, 

the completion time is (N −1)w cycles. 
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Theorem 4: For a linear WSN where each node (except 
the BS) has w packets, the completion time of Algorithm 2 
with T = 3 and τ1 <3 is the same as that of Algorithm 1.  

Proof: Denote the number of nodes (except the BS) as N. 
For Algorithm 2 with T = 3 and τ1 <3, the completion time is 
3(N −1)w slots, according to Theorem 3. 

Next, we assume N is a multiple of 3. The scenarios when 
N is not a multiple of 3 can be treated similarly. 

For Algorithm 1, we have the following: 
1) At the end of slot w, the numbers of packets at nodes 1, 
2, . . . , N are 0,w, 2w, 0,w, 2w, . . . , 0,w, 2w, 0,w,w, 
respectively. 
2) At the end of slot 3w, the numbers of packets at nodes 
1, 2, . . . , N are 0, 0, 3w, 0, 0, 3w, . . . , 0, 0, 3w, 0, 0,w, 
respectively, and there are a total of (N −2)w packets 
remaining at the nodes. 
3) Starting from slot 3w + 1, Algorithm 1 delivers a 

packet to the BS after every three slots. 
 
Therefore, the completion time of Algorithm 1 is 3w + 3 

×(N −2)w = 3(N −1)w slots, the same as that of Algorithm 2. 
For a more general scenario (i.e., nodes have different 

numbers of packets), the difference of completion time of 
Algorithm 2 with T = 3 and Algorithm 1 is bounded, as will 
be shown in Section III-B. 

 
B. Distributed Algorithm in Duty-Cycled Case 
 

To implement Algorithm 2 in a distributed manner, the 
major challenge is that node 1 needs to know whether nodes 3 
and 2 have packets to send so that it can “steal” unused slots 
by nodes 3 and 2, which is hard to achieve in a distributed 
manner. Accordingly, we let node 1 only steal unused slots by 
node 2 as follows. At the very beginning of slot τ1, when node 
1 wakes up and senses the channel to be idle (which means 
node 2 is not transmitting), then node 1 transmits at slot τ1. 
The resulted distributed algorithm is called Algorithm 3. Since 
the channel sensing time can be very short (e.g., in IEEE 
802.11 medium access control standard, 20 μs is more than 
sufficient to detect transmission of other nodes, whereas 
typical time slot duration in WSNs is at least a few dozen 
milliseconds), this sensing overhead is negligible. 

 
Define fa(w1,w2, . . . , wN) as the completion time of 

Algorithm a (a is algorithm index) for a linear WSN with node 
i(i = 1, 2, . . . , N) originally having wi packets. The following 
theorem gives a performance 
bound for Algorithm 3.  

 
Theorem 5: For Algorithm 3 with T = 3 and with the 

proposed working slot assignment scheme, we have 
f3(w1,w2, . . . , wN) ≤f1(w1,w2, . . . , wN) + 3(w1 + w2) + 2. 
     
 (1) 

Proof: Assume that, using the working slot assignment 
scheme, the working slots of the nodes are (τ1, τ2, . . . , τN). 

We have 
f3(w1,w2, . . . , wN) 
≤f3(0, 0,w3,w4, . . . , wN) + f3(w1,w2, 0, 0, . . . , 0) 

≤f3(0, 0,w3,w4, . . . , wN) + 3(w1 + w2).  
 (2) 

 

Here, the second inequality is because, when only nodes 2 
and 1 have packets, Algorithm 3’s completion time (units: 
slots) is at most three times the number of packets in nodes 2 
and 1. 

Then, consider the following modification of Algorithm 1. 
Change  Step 6 from “if Buffer[i] >0 then” to “if Buffer[i] >0 
and node i does not transmit in the previous two slots (slots t 
−1 and t −2) then”. The resulting algorithm is called 
Algorithm 4. It can be proven that, for a linear WSN in which 
nodes 2 and 1 do not have packets, Algorithm 4 is optimal. 
The proof is almost the same as that of Theorem 1 and is thus 
omitted here. Since Algorithm 1 is also optimal, we have f4(0, 
0,w3,w4, . . . , wN) = f1(0, 0,w3,w4, . . . , wN). 

 
Consider a linear WSN with (0, 0,w3,w4, . . . , wN) as the 

vector of packets originally at the nodes. Consider that 
Algorithm 4 is used for the WSN. Then, in the schedule, each 
node transmits at most once in any three consecutive slots. We 
group every three slots into a cycle. In the schedule of 
Algorithm 4, for each transmission of node i(∈ {1, 2, . . . , 
N}), if the transmission time is not slot τi−1 of a cycle (here, 
τ0 ∈ {1, 2, 3} \ {τ2, τ1}), then we postpone the transmission 
time to the next slot τi−1 (which should be either in the 
current cycle or in the next cycle). Therefore, each 
transmission is postponed by at most two slots. The resulted 
transmission schedule is still a feasible schedule. In the 
postponed schedule, node i only transmits at slot τi−1. Thus, 
the postponed schedule’s completion time is not less than the 
completion time of Algorithm 3. In other words, we have f3(0, 
0,w3, . . . , wN) ≤f4(0, 0,w3, . . . , wN) + 2 (recalling that each 
transmission is postponed by at most two slots). 

 
Based on the above results and f1(0, 0,w3,w4, . . . , wN) 

≤f1(w1,w2, . . . , wN), we have (1).  
 
Theorem 5 indicates that the completion time difference 

between Algorithm 3 with T = 3 and Algorithm 1 is bounded 
by 3(w1 + w2) + 2. Since Algorithm 3 is implemented in a 
duty-cycled mode, its completion time is not less than that of 
Algorithm 2, which is optimal in duty-cycled mode. 
Therefore, the completion time difference between Algorithm 
2 with T = 3 and Algorithm 1 is also bounded by 3(w1 + w2) 
+ 2. 

 
Generally, for Algorithm 3, a larger cycle length T can 

achieve more energy saving (since a node can be in sleeping 
state for longer time) but may increase the completion time. 
On the other hand, a smaller T can benefit the completion time 
but consumes more energy. 

 
Next, we extend Algorithm 3 to a low duty-cycled case by 

using adaptive duty-cycle technique, to save energy and 
reduce completion time. Specifically, when the WSN is set up, 
an idle mode is used with a large cycle length Tidle, which is 
a multiple of 3. The working slots are assigned according to 
the proposed working slot assignment scheme. In the idle 
mode, once a node, e.g., node i with working slot τi, receives 
a packet (i.e., node i + 1 detects an event or has received 
packets from node i + 2), node i will forward the packet to the 
next 
node (node i −1), and change to working mode with cycle 

length Twork = 3 and use working slot ((τi −1) mod 3) + 1. 
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Node i also sets up a timer (e.g., 2Tidle slots) for the working 
mode. If no further packet is received within the timer 
duration, then node i changes back to the idle mode with cycle 
length Tidle. When Tidle is a multiple of 3, it can be 
guaranteed that, during the switching between the idle mode 
and the working mode, there is no conflict in the working 
slots of any three consecutive nodes. 

 
The adaptive duty-cycle technique can strike a good 

balance between the completion time of data collection and 
network lifetime. When there is no traffic, nodes work in the 
idle mode with a large cycle length Tidle to save energy. 
When there is traffic, the network changes to working mode 
with Twork = 3 to achieve fast data collection (recalling that 
completion time of Algorithm 3 with T = 3 is close to the 
minimum completion time, with a bounded difference, as 
indicated in Theorem 5), and after all traffic has been 
delivered, the network returns to the idle mode to save energy.  

 
C. Discussion 

 
There are still some issues when the distributed algorithm 

(Algorithm 3) is implemented in real applications. One issue 
is that time synchronization is needed among nodes to 
implement slotted transmissions. However, only much loose 
time synchronization is needed in our distributed algorithm. A 
node, e.g., node i, only needs to synchronize with its next hop, 
i.e., node i −1, at the initialization stage. Such time 
synchronization can be achieved by a time synchronization 
protocol such as the flooding time synchronization protocol 
(FTSP) in [8] with only a few messages (because of the linear 
nature of the considered WSNs). After initial synchronization, 
by the FTSP, nodes i and i −1 can have clock synchronization 
as accurate as 2.24 μs through a few packet exchanges 
between them every 15 min. Therefore, it can be seen that the 
cost of time synchronization is low in our distributed 
algorithm. 

 
Another issue is unreliable wireless communication links, 

which may cause transmission failures and retransmissions 
will be needed. Our Algorithm 3 can still work with 
transmission failures, as follows. In a linear WSN in which 
node i(i = 1, 2, . . . , N) originally has wi packets to be sent to 
the BS, the total number of different packets that should be 
transmitted by node i is_Nl=i wl. Considering transmission 
failures, for_Nl=i wldifferent packets, denote qi as the 
expected total number of node i’s 
transmissions/retransmissions and denote vi = qi −_Nl=i wl 

≥0. Then, the problem is equivalent to data collection in a 
linear WSN in which node i(i = 1, 2, . . . , N) originally has wi 
+vi packets to be sent to the BS and all transmissions are 
successful. 

 
Then, the objective of our algorithm is to minimize the 

expected data collection time. One shortcoming of linear 
topologies is that any node or link failure (which cannot be 
solved by retransmissions, such as a hardware problem or 
battery depletion) may disconnect the network. However, as 
previously mentioned, there are many applications in which 
the WSNs have linear topologies, and it is not cost effective to 
deploy a dense mesh network. To solve the node/link failure 
problem in a linear WSN, we can deploy some nodes as 
backup nodes, which will become active if node/link failures 
happen. Even if there is no backup node, nodes around the 

failed nodes can detect the link failure and take some actions 
to solve the problem (such as increase the transmission 
power). 

 
IV. PERFORMANCE EVALUATION 

We evaluate the proposed algorithms over a customized 
C/C++ simulator. The number of nodes N takes values from 
50 to 100. Two typical traffic models are simulated. One is 
periodic reporting and the other is event detection. For 
periodic reporting, nodes report data to the BS every 30 min. 
In each reporting, for each node i(i ∈{1, 2, . . . , N}), wi is 
randomly chosen from 1 to 9. For event detection, assume 
events occur according to a Poisson process with rate λ = 2 
per hour, which implies that event interarrival times have 
exponential distribution with a mean value of 30 min. When 
an event happens, wi randomly takes values from {0, 1, 2, 3} 
with probability {50%, 16.7%, 16.7%, 16.7%}. Unreliable 
wireless links are also simulated by setting  

 

 
Fig. 3. Completion time of different algorithms for periodic 

reporting every 30 min. 

 
Fig. 4. Completion time of different algorithms for event 
detection with mean event interarrival time being 30 min. 
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the successful probability of a transmission/retransmission to 
be 0.8. The length of one slot is 20 ms, and the statistics are 
collected for 120 h of network time.  

 
Figs. 3 and 4 show the average completion time of 

Algorithms 1 and 2 with T = 3, and Algorithm 3 with T = 3 
and adaptive duty cycle (with Tidle = 21 and Tidle = 99, i.e., 
the initial duty cycle is approximately 5% and 1%, 
respectively), for periodic reporting and event detection, 
respectively. We also simulate the scheme in [2], and confirm 
that our Algorithm 1 and the scheme in [2] have the same 
completion time when the transmission links are reliable 
(although the schedules in the two algorithms are different). 
Therefore, we do not show the simulation results of the 
scheme in [2], and only Algorithm 1 is shown as the 
benchmark. The upper bound of completion time of 
Algorithm 3 with T = 3 (as indicated in Theorem 5) is also 
shown in the two figures. In the two figures, the histogram 
means the average completion time with reliable transmission 
links, whereas the line 
segments above the histogram mean the completion time 
increase due to unreliable transmission links. 

 
From the two figures, it can be seen that Algorithm 2 with 

T = 3 has slightly larger completion time than Algorithm 1, 
whereas Algorithm 3’s completion time with T = 3 is very 
close to that of Algorithm 2. Compared with Algorithm 1, the 
completion time  

 

 
Fig. 5. Normalized network lifetime of Algorithm 3.  
 

of Algorithm 3 with Tidle = 21 increases by no more than 2% 
(3% for unreliable links) for periodic reporting, and it 
increases by no more than 10% (17% for unreliable links) for 
event detection. Algorithm 3 with Tidle = 99 still performs 
well for periodic reporting, whereas its completion time 
increases apparently for event detection. The reason is as 
follows. For periodic reporting, as all nodes have packets to 
send, they can quickly switch to working mode. For event 
detection, the traffic is sparsely distributed along the linear 
network, and it takes some slots (e.g., half a cycle on average) 
for downstream nodes to change to working mode. In 
addition, it takes much more slots when transmission links are 
unreliable, as indicated by Fig. 4.  

We next evaluate the network lifetime of Algorithm 3 
with T = 3 and with an adaptive duty cycle. In each cycle, a 

node is in receiving state at its working slot, in transmitting 
state if it transmits at the working slot of its next-hop 
neighbor, or in sleeping state at other slots. According to [9], 
the power consumption for receiving and 
transmitting in a WSN are similar, whereas the power 
consumption in sleeping state is very small and can be thus 
neglected. Therefore, in our simulation, we assume that the 
energy consumption of a node at a time slot is a constant 
positive value if the node is in transmitting or receiving state, 
and the energy consumption is zero when the node is in 
sleeping state. Since all packets have to go through node 1, we 
take the lifetime of node 1 as the network lifetime. We regard 
the lifetime of node 1 when it is always in receiving or 
transmitting state as one, and we measure the normalized 
network lifetime of our Algorithm 3 with T = 3 and with an 
adaptive duty cycle (with Tidle = 21 and Tidle = 99), as 
shown in Fig. 5. In the figure, the line segment under each 
discrete mark means the decrease in network lifetime due to 
unreliable transmission links. It can be seen that, for a given 
traffic model (periodic reporting or event detection), the 
network lifetime is approximately proportional to the cycle 
length. The network lifetime tends to decrease as the number 
of nodes in the network increases, as shown in Fig. 5. This is 
reasonable because, with more nodes, more traffic may be 
generated, which eventually needs to be transmitted by node 
1. 
 
V. CONCLUSION 

For data collection in a linear WSN, we first provide an 
optimal solution for non-duty-cycled case as a benchmark. 
Then, we propose an optimal algorithm and a distributed 
algorithm for duty-cycled case. Our results will provide 
theoretical performance bounds for data collection time in 
linear WSNs. The insights gained in our proposed algorithms 
can be helpful for developing data collection algorithms for 
WSNs with other topologies. 
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