
 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

SQL Injections – A threat to Web Applications
Juhi Gupta1 | Ruchi Singhal2

1 (Assistant Professor, Department of Computer Science, Maharaja Agrasen College, University of Delhi, India,
juhiaqua26@gmail.com)

2 (System Engineer, Tata Consultancy Services,Gurgaon, India , ruchisinghal07@gmail.com)

 Abstract: SQL injections have become a serious threat to the integrity, confidentiality and security of web applications. Attackers
can gain unauthorized access to the database and can cause serious damage to the web application. Researchers have proposed
various solutions to this problem. Many tools have also been devised to deal with this problem but each come with a limitation. In this
paper, study about SQL injections has been done. Various types of SQL injection and tools to counter them has been discussed in this
paper. For each technique, we have discussed its strengths and weaknesses in addressing the entire range of SQL injection attacks.

Keywords: SQL Injection Attacks (SQLIA); query; database; web application

1. INTRODUCTION

Today in the era of internet, web applications are most
vulnerable to attacks by hackers. Web applications are being
developed by many organizations to provide services to their
users. They receive inputs from the users, interact with their
underlying databases and then return the relevant response.
The confidential and sensitive information contained in the
back end database interest attackers. SQL Injection is the
hacking technique, used to attack data driven applications that
take advantage of lack of input validation. In this technique an
attacker attempts to create or alters SQL commands
(statements) for execution by the backend database in order to
expose hidden data.

SQL injection attacks are the common threat to the
security and integrity of web applications. An SQL injection
attack can successfully modify the data in database
(Insert/Delete/Update), read confidential and sensitive data
from it, execute various administrative operations such as
shutdown the DBMS and in some cases may even issue
commands to operating system. It means that SQL queries are
thereby bypassing standard authentication and authorization
checks i.e. they are able to circumvent access
controls.Irrespective of sufficient network security equipment
and all the intrusion detection system installed before the
physical database server, a hacker will have clear channel (or
tunnel) of communication to the database.

Insufficient validation of user input is the main cause of
SQL injection vulnerabilities. To address this problem, a
range of coding guidelines have been proposed by many
developers that promote defensive coding practices, such as
encoding user input and validation[1]. A rigorous and
systematic application of these techniques is an effective
solution for preventing SQL injection vulnerabilities.
However, in practice, the application of such techniques is
human-based and, thus, prone to errors. Furthermore, fixing
legacy code-bases that might contain SQL injection
vulnerabilities can be an extremely labor-intensive task.

Firewalls and similar intrusion detection mechanisms are
not capable of providing full defense against SQL Injection
web attacks. Several techniques have been proposed to
prevent SQL injection attacks. This paper surveys various
prevention techniques and detection tools for SQL injections.

2. TYPES OF SQL INJECTION ATTACKS

There are various types of SQL injection attacks that can
be performed together or sequentially on web applications
depending on the intent of attacker. In this paper different

kinds of SQL injection attacks are discussed along with the
example. Before discussing the different types of SQL
injection attacks, we present an example application written
using Java servlet which is vulnerable to SQL injection.

1. String empID, password, query

2. empID= getParameter(“Employee id”);

3. password = getParameter(“pwd”);

4. Connection
con.createConnection(“DatabaseName”);

5. query = "SELECT * FROM users WHERE
empID=’" +

6. empID + "’ AND pass=’" + password “ ‘ ;

7. Resultset result = con.executeQuery(query);

8. If (result!=NULL)

9. displayHomePage(result);

10. Else

11. displayInvalidUser();

The code snippet above implements a simple login
functionality which is common in most of the web
applications. This example is used in this paper for illustrative
purposes as it is simple to understand. This code uses two
input parameters i.e. employee ID and its password to build a
dynamic SQL query and submit it to the database.

For example, if the user submits empID as ‘681563’ and
password as ‘abc’ then the application dynamically builds the
following SQL query and submits it to the database

SELECT employee FROM users WHERE empID=”681563”
AND pass =”abc”

If the employee ID and the password matches the one
stored in backend database then home page for the employee
is displayed by calling displayHomePage() function otherwise
error message is displayed to the unauthorized user. Now the
following classification of SQLIAs [1, 2] will be presented.

2.1 TAUTOLOGIES

The tautology based SQL attack aims to inject code in
conditional statements so that they always evaluate to true.
This type of attack is commonly used to bypass authentication
pages and extract sensitive data from the database. The
attacker exploits the vulnerable field that is used in the Where
condition of the query. This is also known as first order

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 01 2015 www.researchscript.com 34

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

Injection attack where the attacker simply enter a malicious
string and causes the modified string to be executed
immediately [3]. All the rows in the targeted table of the
database are returned to the attacker by transforming the
conditional statement into tautology. Example: In this
example attack, the attacker enter malicious data into the input
field i.e.” ‘ ‘ OR ‘1’ =’1’ in the employee id and password
field. The resulting query is :

SELECT * FROM users WHERE empID = ' ' OR '1'='1' AND
pass = ' ' OR '1'='1';

This code transforms the entire Where clause into
tautology which is always true. The query evaluates true for
every row in the backend database and returns all of them
[1,4].

2.2 ILLEGAL/LOGICALLY INCORRECT QUERIES

Often, developers use inbuilt error handing libraries and
functions which help in the debugging and code fixing
process. These functions deliver error messages on the screen
which can reveal lot of sensitive data about the application
and attacker can even gain information about the schema of
the database. They are also known as Error based SQL
injections. In this type of attack, the attacker intentionally
injects junk input which causes the syntax, type mismatch or
logical errors in the database. Vulnerable or injectable
parameters can be easily identified with the help of syntax
errors. Data type of input fields can be deduced from type
mismatch error. Logical errors often reveal the names of the
tables and columns that caused the error [1].

Example: This example attack’s goal is to find out
whether the input field is injectable or not by causing type
mismatch error. Suppose there is a script
likehttp://abcsite.com/loginscript.php?id=1and we have to
find out if it is vulnerable to SQL injection. The attacker
might inject the following code in the URL

SQL INJECTION:

http://abcsite.com/loginscript.php?id=1’

Error message depends on the quality of script. If the
script filters it for SQL keywords then no SQL error would be
returned but if the script has no filtering mechanism then the
attacker might get an error like this

"MySQL Syntax Error By '1'' In file loginscript.php On Line
9."

This shows that server does not filter the input fields for
SQL command and is injectable.

2.3 PIGGY BACKED QUERIES

In this type of attack, the attacker’s intent is to inject
additional query thereby modifying data, performing denial of
service operation or execute remote commands. Here, the
existing query is not modified instead an additional query is
piggybacked onto the original query. The attacker exploits the
database by using query delimiter (;). Web applications
having database configuration that allows multiple statements
in a single string are vulnerable to this type of attack.

Example: If the intruder or attacker inputs “ ‘; INSERT
INTO users (empID, pass) VALUES (‘attacker employeid’,’
attacker password’);--” into the pass field, the application
generates the query:

SELECT * FROM users WHERE empID=’681563’
AND pass= ‘ ‘; INSERT INTO users (empID, pass) VALUES
(‘attacker employeid’,’ attacker password’);-- ’

The database would recognize the query delimiter after
executing the first query and would execute the injected
query. The result of the query would be to add another user in
the users table which attacker can use subsequently to login
into homepage.

2.4 UNION QUERY

With this technique, an attacker may retrieve the data
from other tables as well by injecting SQL statement of the
form UNION SELECT <injected query>. Since the attacker is
in control of the second query, it can be used to extract data
from unrelated tables. The UNION SELECT statement allows
chaining of two queries that are unrelated i.e. having nothing
in common.

Example:

SELECT * FROM users WHERE empID= ‘ ‘
UNIONSELECT * FROM AccountDetails WHERE
empName =’abc’ AND pass = ‘ ‘

The first query will return the null set as there will be no
row in the database where the empID field is null but the
second query will return the details from AccountDetails
table. The result of the query will be union of the result set of
these two queries.

2.5 INFERENCE

In this type of injection, the attackers are trying to attack
website which is highly secured. Even when an injection has
been succeeded, no useful information or feedback is provided
by the database error messages. In this situation, the attacker
enters various commands into the site to trigger noticeable
changes in the responses of the website. The attacker can then
deduce the vulnerable parameters as well as additional
information about the values in the database by carefully
noting the behavior of the database. Two well known
techniques that are based on inference are

• BlindInjection

In this injection, the attacker asks server true/false questions
and then infers the behavior of the page depending on the
answer. The word ‘blind’ comes from the fact that the injector
is blindly injecting commands using some calculated
assumptions and tries [6].

Example : let us consider two injections for our running
example.

SELECT * FROM users WHERE empID = ‘validID’ AND
1=0 - - ‘ AND pass= ‘ ‘

SELECT * FROM users WHERE empID = ‘validID’ AND
1=1 - - ‘ AND pass= ‘ ‘

After the execution of these two injections, attacker
might come across two scenarios. In the first scenario, the
application is secured enough and correctly validates the
empIDfield. In this case, application would return error
messages upon execution of both injections and the attacker
would infer that the empID field is not vulnerable. In the
second scenario, the application is unsecured and is vulnerable
to SQL injection. In this case, upon execution of first
injection, a login error message is returned but at this point the
attacker doesn’t know if this is because the application

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 01 2015 www.researchscript.com 35

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

blocked the attempt and correctly validated input or because
the attack itself caused the error as it always evaluates to false.
The attacker then executes the second injection, which always
evaluates to true (1=1). If no error message is returned by the
application then the attacker would know that the input field is
injectable and the attack went through.

• Timing Attacks

It is a technique in which attacker retrieve information from
the database by observing timing delays in the response of
database [1]. This technique uses a different method of attack
than blind injection. In this method, the attacker asks yes/no
questions from the database by injecting a conditional time
delay in the query. The time delay will be executed depending
on if the condition is true or false and the server will take
abnormally long time to respond. In this way, the attacker gets
to know if the condition was true or false and therefore the
answer to the injected question.

Example:

SELECT * FROM usersWHEREempID=1; IF
SYSTEM_USER='sa' WAIT FOR DELAY '00:00:17'

Using this query injection, the attacker would be able to check
if the user is sa (system administrator) based on the response
from server.

2.6 STORED PROCEDURES

Today, many databases come with standard set of stored
procedures which aim to extend the functionality of the
database and also allow for interaction with the operating
system. Attackers can easily determine which backend
database is in use and then craft their SQL injection attacks
which can execute stored procedures provided by that
database. Developers are often surprised to find that their
stored procedures can be just as vulnerable to attacks as their
normal applications [4,7].

Example :

Stored procedure for authentication

CREATE PROCEDURE DBO.isAuthenticated@userName
varchar2, @pass varchar2

AS

EXEC("SELECT * FROM users WHERE empID=’"
+@userName+ "’ and pass=’" +@password "’);

GO

To launch SQL injection attack (SQLIA), the attacker simply
inserts “ ’ ; SHUTDOWN; - -” into either inputfields. The
stored procedure generates the following query:

SELECT * FROM users WHERE empID=’681563’ AND
pass=’ ’; SHUTDOWN; --

This attack works as piggy back query attack, First query is
executed normally then the second malicious query is
executed which causes database to shutdown.

2.7 ALTERNATE ENCODINGS

This is a technique which is often used by attackers in
order to avoid detection by many automated prevention
techniques and defensive coding practices. In this type of
attack, the attacker modifies the injected text by using
alternate encodings such as ASCII, hexadecimal and Unicode.
Developers often employs common defensive coding practices

which scans certain known characters (“bad characters”) such
as comment operators and single quotes. To evade this
defense, attackers have employed alternate methods of
encoding injected query.

Example: In this attack, the following text is injected into the
empID field:“legalUser’; exec(0x73687574646f776e) - - ”.
The query that will be generated after this injection is:

SELECT * FROM users WHERE empID=’legalUser’;

exec(char(0x73687574646f776e)) -- AND pass=’’

In this example, char() function and ASCII hexadecimal
coding is used. This function takes integer parameter and then
return an instance of that character. The hexadecimal
character stream used in this injection corresponds to the
string “SHUTDOWN”. Therefore, this injection results in the
execution of SHUTDOWN command by the database.

3. SQL INJECTION DETECTION AND PREVENTION
TOOLS

Researchers have found that defensive coding techniques
or OS hardening are not enough to stop SQLIA on web
applications so many tools have developed for the task.
Various tools that have been developed for prevention and
detection of SQLIA are discussed in this paper.

Huang and colleagues [8] proposed WAVES,a black-box
technique for testing Web applications for SQL
injectionvulnerabilities. This technique identifies all
vulnerable points in the web application where attacker can
inject SQL injection using a web crawler. It then attacks those
target points using specified list of patterns and attack
techniques. WAVES then analyses the response returned by
the application and improves its attack methodology. This tool
does not guarantees of completeness.

Static Code Checker or JDBC- Checker can be used to
prevent SQLIA which take advantage of type mismatches in
the dynamically generated query string. This checker can
detect one of the root cause of major SQLIA vulnerabilities in
code i.e. improper type checking of input but its scope is
limited as it cannot detect other types of attacks.

SQL Guard and SQL Check approaches check queries at
runtime based on a model of expected queries which is
expressed as a grammar that only accepts legal queries. In
SQL Guard, first the structure of the query is examined before
and after the addition of user input and then the model is
deduced at runtime whereas in SQLCheck, the model is
specified independently by the developer. In both approaches,
a secret key is used which delimit user input during parsing.
Thus, security depends on attacker not being able to discover
the key. Also, developers rewrite code to use a special
intermediate library or manually insert special markers where
user input is added to a dynamically generated query [1].

AMNESIA is a model based technique which involves
runtime monitoring as well as static analysis. In the static
phase, AMNESIA builds models of different queries that an
application can generate at each access point to the database.
It then intercepts all queries before sending them to the
database and checks each query against the statically built
models in the dynamic phase. SQLIAs are identified as the
queries which violate the model and are prevented from
executing on the database.

WebSSARI [10] use static analysis to check taint
flowsagainst preconditions for sensitive functions. This

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 01 2015 www.researchscript.com 36

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

analysis detects the points where preconditions have not been
met and then suggest some sanitization functions or filters
which can be added to the application in order to satisfy these
preconditions. The limitation of approach is adequate
preconditionsfor sensitive functions cannot be accurately
expressed sosome filters may be omitted.

SecuriFly is a technique that was implemented for java.
Queries generated by tainted input are sanitized using this
technique but this approach does not help if the injection is
performed into numeric fields. Identification of all sources of
tainted user input in web applications is the limitation of this
technique.

Valeur and colleagues [11] proposethe use of an
Intrusion Detection System(IDS) to detect SQLIAs. It is based
on a machine learning technique that is trained using a set of
typical application queries. The technique first builds a model
of all typical queries and then monitors the response of
application at runtime in order to identify queries that do not
match the model. The major drawback of learning based
techniques is that they are dependent on the quality of training
set used and hence cannot provide guarantee about their
detection capabilities.

4. CONCLUSION AND FUTURE SCOPE

In this paper, we discussed and analyzed various types of
SQL injections prevalent today with the help of an example
application. Then we investigated various SQL injection
detection and prevention tools available. Strengths and
weaknesses of each has been discussed. In our future work,
we will propose a common framework that would be able to
measure effectiveness, efficiency of these tools in countering
SQL injection attacks.

REFERENCES

[1]. William G.J. Halfond, Jeremy Viegas and Alessandro Orso, “A
Classification of SQL Injection Attacks and Countermeasures,”
College of Computing Georgia Institute of Technology IEEE, 2006.

[2]. Atefeh Tajpour, Suhaimi Ibrahim, Maslin Masrom, "Evaluation of
SQL Injection Detection and Prevention Techniques”. International
Journal of Advancements in Computing Technology, 2011, Korea.

[3].http://download.oracle.com/oll/tutorials/SQLInjection/html/lesson
1/les01_tm_attacks.htm

[4]. M. Howard and D. LeBlanc. Writing Secure Code. Microsoft
Press, Redmond, Washington, second edition, 2003

[5]. S. McDonald. SQL Injection: Modes of attack, defense, and why
it matters. White paper, GovernmentSecurity.org, April 2002.

[6]. http://resources.infosecinstitute.com/sql-injections-
introduction

[7]. C. A. Mackay. SQL Injection Attacks and Some Tips on
How to Prevent Them. Technical report, The Code Project, January
2005. http://www.codeproject.com/cs/database/
SqlInjectionAttacks.asp.

[8]. Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application
Security Assessment by Fault Injection and Behavior Monitoring. In
Proceedings of the 11th International World Wide Web Conference
(WWW 03), May 2003.

[9]. Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan,
CANDID: Preventing SQL Injection Attacks using Dynamic
Candidate Evaluation. Proceedings of the 14th ACM conference on
Computer and communications security. ACM, Alexandria, Virginia,
USA.page:12-24.

[10]. Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y.
Kuo. Securing Web Application Code by Static Analysis and Runtime

Protection. In Proceedings of the 12th International World Wide Web
Conference (WWW 04), May 2004.

[11]. F. Valeur, D. Mutz, and G. Vigna. A Learning-Based
Approach to the Detection of SQL Attacks. In Proceedings of the
Conference on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA), Vienna, Austria, July 2005.

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 01 2015 www.researchscript.com 37

