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Abstract— In this paper, various types of automata and its accepted languages are illustrated.  The exact language of binary strings 
of multiples of three representing the DFA is constructed. Based on proposed approach, a systematic way to design a DFA is provided 
from constructed NFA’s. 
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1. INTRODUCTION  
In the theoretical foundations of computer science, 

automata theory is the study of abstract machines and the 
problems which they are able to solve. These abstract 
machines are called automata. A discrete automaton is a 
mathematical model for a finite state machine (FSM). An 
FSM is a machine that takes a symbol as input and 
transitions, from one state to another according to a 
transition function (which can be expressed as a transition 
table). This transition function tells the automaton which 
state to go to next given a current state and a current 
symbol. Turing Machine is one of the vital portions of 
Automata Theory; it's the father of all computers. That is 
Automata Theory a set of mathematical calculations and 
formulas describing the automation or process of that 
machine. Automata Theory does not deal with real 
automatons such as robots, but deals with simulated object 
in a computer. The automaton reads each character when it 
passes through states. The combined characters make up a 
string when the automata stops at an accept state.  

Basically two models are discussing. Of which, 
one model called finite automaton is used in text 
processing, compilers, and hardware design. Another 
model, called the context-free grammar, is used in 
programming languages and artificial 
intelligence. Automata theory is an excellent place to begin 
the study of the theory of computation. The theories of 
computability and complexity require a precise definition 
of a computer. Automata theory allows practice with 
formal definitions of computation as it introduces concepts 
relevant to other non theoretical areas of computer science.  

2. FINITE STATE AUTOMATA 

2.1  ALPHABETS AND LANGUAGES 
It is convenient to consider a set of finite length 

strings over some fixed finite alphabet to discuss finite 
state automata and regular expressions. An alphabet is any 
finite set. The arbitrary finite alphabet is denoted by the 
Greek letter C. The elements of ∑  are called the symbols 
and usually denote them by a, b, c, …, or 0, 1.  Any finite 
length sequence w  of symbols over the alphabet ∑ is 
called a string over ∑ . The number of symbols in w  is 

the length of the string and is denoted by w  . A string of 

length 0 over any alphabet ∑  is called null string and 
denoted by symbol ε (epsilon). The set of all strings 
(includingε ) over an alphabet ∑  is denoted as ∗∑ .  If 

∑ is non-empty, then ∗∑  is an infinite set of finite length 

strings. Any subset of ∗∑  is called a language over ∑ . 

2.2 Finite State Automata 
Let ∑  be a finite alphabet. An automaton over ∑  is a 5–

tuple ( ), , , ,A Q I Fδ= ∑  where Q is a set of states,  I  

is a subset of Q  whose elements are called the initial 
states, F  is a subset of Q  whose elements are called final 

states, δ  is called transition function defined from the 

Cartesian product Q×∑  to Q . The triplet ( ), , 'q a q , 

where ( ), 'q a qδ =  is called an edge, and the sequence 

( )1, , , 1, 2,...,i i iq a q i n+ =  of consecutive edges is 

called a path. Then the word 1 2.... nw a a a=  is called the 
label of the path. A word w is said to be accepted by the 
automaton A  if there is a path with label w such that 

1q I∈  and 1nq F+ ∈ . The set of all words accepted by an 

automaton A is called the language recognized by A . It is 
denoted by ( )L A . 
2.2.1 Definition 

i. An Automaton A  is called trim if for all 
q Q∈  there is at least one path through q 
beginning at an initial state and ending at a final 
state. 

ii. An automaton A  is called deterministic (DFA) 
if there is only one initial state and if for all 

( ),q a Q∈ ×∑  , there is at most one state 'q  

such that ( ), 'q a qδ =  , otherwise the 

automaton is called non-deterministic (NFA). 
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iii. An automaton is called standard or non-returning 
if there is only one initial state and there is no 
edge having the initial state on tail. 

An automaton is also represented as a directed 
graph where each node represents a state and there is an 
arc labeled by an input symbol between the nodes. The 
initial states are denoted with the word start and final 
states are denoted by concentric circles. 

For example, the various types of automata and the 
language they recognize are given below. 

 
2.2.2 Examples 

i. The automaton recognizing the language of 0’s 
and 1’s that begin with 01 or ends with 01, both is 
given below. 

 
 The above automaton is a trim, as well as DFA 

and standard. 
 
ii. The following automaton is an NFA 
recognizing the language of a’s and b’s that end 
with ab. 

 
iii. The following is a DFA recognizing the 

language 
/

0 ' 1'
w w has botheven number of

L
s and even number of s


= 


 

over the alphabet { }0,1∑ = . This is not a 

standard automaton. 

 
 

iv. The following is a DFA, but not trim which 
recognizing the language of 0’s and 1’s and that 
begins with 0, and end with 01.  

 
 

2.3 CONSTRUCTION OF FINITE STATE AUTOMATA 
 The construction of FSA in general and the DFA in 
particular so as to accept the given language exactly is an 
interesting feature in the area of automata theory [3]. 
Naturally, the construction of NFA is quite simple, as it is 
assumed that NFA have the capability to guess something 
about input given, whereas a clear procedure is very much 
required to construct DFA so that the given DFA accepts 
only the strings for which it has been constructed, and 
rejects for all other strings. By rejection, it is meant that 
the process will not lead to final state when such strings 
are given as input. 
 As an example, let us construct a DFA that 
recognize the language of all strings with three 
consecutive zeros not necessarily at the end over the 
alphabet { }0,1∑ = . It can be seen that the strings over 

the given ∑  based on the given specifications can be 
classified as  

i. The string processed so far has three consecutive 
0’s  

ii. The string processed so far has two consecutive 0’s  
iii. The string processed so far has only one 0 
iv. The string processed so far has no 0’s  

 Thus, we need four states corresponding to these 
four cases. Among these, the state corresponding to the 
case of strings that is far away from the required form is 
assumed as the start state and the state representing the 
strings of the given language is assumed as the final state. 
In this example, we designate the states representing case 
iv and case i as start state 0q  and the final state 3q  
respectively. Since, case ii is nearer to case i and case iii is 
nearer to case iv, they are to be represented as the states 2q  

and 1q  respectively. Initially, let the DFA is at 0q  that is it 
has processed the strings having no 0’s. Therefore, if the 
next input to be processed is 0, then we get a string from 
case iv to case iii, i.e., the DFA is at 0q  is to move from 

0q  to 1q  on input 0. But, if 1 is the input, then again we 
have the same string of no 0’s. i.e., the string of case iv. 
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Therefore the DFA should remain at 0q  itself for the input 

0. Thus, we define the transition function δ  which directs 

the moves of the DFA at 0q  as ( )0 1,0q qδ =  and

( )0 0,1q qδ = . Next, let us assume that the DFA is at 1q , 

i.e., the DFA is at 1q  after processing the string that ends 
with a single 0. Therefore, if again 0 is the input then we 
get a string of case ii or if 1 is the input, we get a string of 
case iv. Thus, the DFA should move from 1q  to 2q  if 0 is 

the input or it should move from 1q  to 0q  if 1 is the input. 

Thus, the δ  at 1q  is defined as ( )1 2,0q qδ =  and 

( )1 0,1q qδ = . To define δ  at 2q , we assume that the 

DFA is at 2q  after processing the string that ends with 00. 
If the next input is 0, we get the required string having 
three consecutive 0’s but, if 1 is the input, we are at having 
a string of case iv, i.e., the string that ends with 1. Thus, we 
define  δ  at 2q  as ( )2 3,0q qδ =  and ( )2 0,1q qδ = . 

Finally, assume that the DFA is at 3q . It means that the 
DFA has already encountered the string consisting three 
consecutive 0’s. Therefore, it will accept all the strings 
irrespective of the next inputs. Thus, we define δ  at 3q  as 

( )3 3,0q qδ =  and ( )3 3,1q qδ = . Thus, the DFA 

accepting the given languages is ( )0, , , ,D Q q Fδ= ∑  

where { }0 1 2 3, , ,Q q q q q= ; { }0,1∑ = , 0q  is the start 

state; { }3F q=  and is defined as  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 1 0 0 1 2 1 0

2 3 2 0 3 3 3 3

, 0 ; , 1 ; , 0 ; , 1
, 0 ; , 1 ; , 0 ; , 1

q q q q q q q q
q q q q q q q q

δ δ δ δ
δ δ δ δ

= = = =
= = = = . 

The transition table is given by  

 0 1 

0q  1q  0q  

1q  2q  0q  

2q  3q  0q  

3q * 3q  3q  

 

The transition diagram is given below. 

 

Similarly, one can easily construct the DFA that accepts 
the language of strings of 0’s and 1’s that has 00 as a 
substring as in the fig. 

 
The above procedure has been extensively discussed in [3]. 
But this procedure will not suit for all types of languages. 
For example, consider the language of binary strings 
represent multiples of three. Here the strings are 
0, 11, 110, 1001, 1100, 1111, 10010,....  It is hard to classify 
the strings as done in the previous example. Hence the 
strings are grouped, and the states are associated in the 
following way.  

if the number represented by 
the string scanned so far is 

then the DFA will  
be  in state 

0 mod 3 0q  

1 mod 3 1q  

2 mod 3 2q  

 
The transition diagram of the DFA is given below 

 
Dexter C.Kozen [1] has proved by induction that the above 
DFA accepts exactly the language of binary strings 
represent multiples of three. 

An approach was proposed by N.Murugesan and 
B.Samyukthavarthini [4] in 2013. This procedure is more 
helpful when the given set of strings do not possess any 
generic nature. This approach provides a systematic way to 
design a DFA from the easily constructed NFA’s. The 
following are the steps involved in this approach. 
Step 1 

Identify the set 1B  of basis strings of minimum 
length of the given language L. 
For example, if 1L  is the language of strings of 0’s and 1’s 

that consist at least two 0’s, then, the set 1B  of basis 

strings of minimum length is { }00  in case of the language 

2L  of strings of 0’s and 1’s that consist even number of 

0’s and even number of 1’s, the set 1B  of basis strings is

{ }, 00,11ε , where ε denotes the empty string. 
Step 2 

Design an NFA that accepts the strings of the set 

1B . For the language 1L , the FA accepting 1B  is  
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and for the language 2L , the NFA accepting 1B  is  

 
It can also be designed NFA, accepting 1B  of 2L  as 

 
that too accepts  ε  , 00 and 11, but it also accepts the 

strings  
01 and 10 that are not in 2L . This is the point to be kept in 
mind at every juncture of this type construction. 
Step 3 

If the NFA constructed in step 2 is a DFA, then 
this is the DFA accepting L. 
The above two NFA constructed for 1L and 2L  are not 
DFA. In the first case, the NFA not at all considering the 
input 1 at any state and in the second case only 0q  is the 

complete state in the sense that the NFA moves to 1q  and 

2q for the inputs 0 and 1 respectively at 0q . The moves not 

at all defined at 1q  for the input 0 at 2q . 
Step 4 

If the NFA is not a complete NFA, then generate 
the next set 2B  of strings from the set 1B  by incorporating 
the minimum number of input symbols to each and every 
element of 1B .  

In the case of 1L , the set { }2B 000, 001, 010,100= and  

for 2L , { }2B 0000,  0011, 0101, 0110, 1001, 1010, 1100,  1111= . 
Step 5 

Modify the NFA constructed in step 2 that accepts 
the set 2B together with 1B . It may accept some other 
strings of L but that should not lead to accept the strings 
not from the language L as discussed in step 2. 

Step 6 
If the modified NFA is a DFA, then it is the DFA 

accepting the language L. Otherwise the above steps to be 

repeated from step 4 and to generate the set B’s again and 
again until a complete DFA, is obtained. 
 It is quite surprising to see that a naturally defined 
language in one way corresponds so closely to naturally 
define a theoretical machine in another way. Is this merely 
a coincidence? Whenever the NFA becomes the DFA, then 
it accepts the entire language L not merely the set 

1
Bn

ii= .  

The modified NFA accepting the set 2B  together with 1B  

of 1L  is 

 
and the same for 2L  is 

 
Note that both NFA become DFA and see that they accept 
the language 1L  and 2L  respectively. Now let us consider 
another example which is little harder than the above two 
examples. 

Let 
( )0,1 /   represents a multiple three

L
 in binary allowing leading 0’s

x x∗∈
=




 

           * indicates that the L contains empty string also.  
 
      The following is the list of binary strings that 
represents multiples of 3 and their decimal equivalent. 

 

 
Let { }1B 0= . The NFA accepting 1B  is 

 
 

Let { }2B 11= . The NFA accepting 1 2B B∪  is 

Binary Decimal 
equivalent Binary Decimal 

equivalent 

0 11 1100 12 

11 3 1111 15 

110 6 10010 18 

1001 9 10101 21 
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Let { }3B 110= . The NFA accepting 1 2 3B B B∪ ∪  is 

 
This NFA accepts also the strings 

( ) ( )11000 24 ,  110000 48  and so on .,= = …  that are also 

multiples of 3. Let { }4B 1001, 111= . In order to make 
the NFA to accept 1001, the only possibility is that we 
have to form a loop at 2q  for the input 0. If we do it, then 

it will also accept the string ( )101 5=  which is not a 
multiple of 3. Therefore a complete reorganization of states 
is necessary. The modified structure may be drawn as 
follows. 

 
Now consider { }5B 10010, 10101= , the NFA 

already accepting 10010, and if we form a loop at 2q for 
the input 1, then it will accept 10101 and also 101101         
( =45), 1011101(=93), … and so on. These all are again 
multiples of 3. 

The important thing is that it has become a DFA and so 
we can easily verify that it accepts exactly the given 
language L. 

 
As another example, let us consider the language L that 

recognizes the multiples of 3 in the decimal system. 
Initially, let { }1B 0, 3, 6, 9=  and by intuition we realize 
that the repeated symbols are also belongs to L. i.e., 000…, 
333….666….999… are multiples of 3. Thus the NFA 
accepting 1B  is 

 

 

{

}

2Let B  12, 15, 18,  21,  24,  27, 30,  33,  
36, 39,  42,  45,  48,  51,  54,  57,
60,  63,  66,  69, 72,  75,  78,

 81,  84,  87,  90,  93,  96,  99

=

 

 The FA accepting 1 2B B∪  is 

 
The above NFA also recognize the numbers that 

end with 0, 3, 6, 9 from third digit onwards.   
{

}

3If B = 102,  105,  108,  111,  114,  117,  120,  123,   

126,  129,  132,  135, 138,  141,  144,  147,
150,  153,  156,  159,  162,  165,  168,  171, 174,

177,  180,  183,  186,  189,  192,  195,  198

 then the NFA accepting 1 2 3B B B∪ ∪  is 

 
{

}

4Let B 201,  204,  207,  210,  213,  216,  219, 222,   

225,  228,  231,  234,  237, 240,  243,  246,  249,

252,  255,  258,  261,  264,  267,  270,  273,  276,

279,  282,  285,  288,  291,  294,  297,  300

=

 

The NFA accepting 1 2 3 4B B B B∪ ∪ ∪   is  

 
 The NFA becomes a DFA, and it accepts all the    
           numbers of multiples of 3. For example, let us check      
            this for the number 37068. 
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Since 0q  is the final state, 37098 is a multiple of 3. 
 

3 CONCLUSION 

 In this paper, the languages of binary strings representing 
DFA have been discussed. From the NFA construction, 
An approach proposed by N.Murugesan et al., is more 
helpful when the given set of strings do not possess any 
generic nature.  
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Input Current 
state Input  Current 

state 

- 0q  0 1q  

3 0q  6 1q  

7 1q  8 0q  
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