
 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

A General Approach to DFA Construction
N.Murugesan1, O.V.Shanmuga Sundaram 2

1(Dept of Mathematics, Government Arts College (Autonomous), murugesanmathsgac@gmail.com)
2(Dept of Mathematics, Sri Shakthi Institute of Engineering & Technology, Coimbatore, India, ovs3662@gmail.com)

Abstract— In this paper, various types of automata and its accepted languages are illustrated. The exact language of binary strings
of multiples of three representing the DFA is constructed. Based on proposed approach, a systematic way to design a DFA is provided
from constructed NFA’s.

Keywords— regular expressions, binary strings, and construction of NFA and DFA.
__

1. INTRODUCTION
In the theoretical foundations of computer science,

automata theory is the study of abstract machines and the
problems which they are able to solve. These abstract
machines are called automata. A discrete automaton is a
mathematical model for a finite state machine (FSM). An
FSM is a machine that takes a symbol as input and
transitions, from one state to another according to a
transition function (which can be expressed as a transition
table). This transition function tells the automaton which
state to go to next given a current state and a current
symbol. Turing Machine is one of the vital portions of
Automata Theory; it's the father of all computers. That is
Automata Theory a set of mathematical calculations and
formulas describing the automation or process of that
machine. Automata Theory does not deal with real
automatons such as robots, but deals with simulated object
in a computer. The automaton reads each character when it
passes through states. The combined characters make up a
string when the automata stops at an accept state.

Basically two models are discussing. Of which,
one model called finite automaton is used in text
processing, compilers, and hardware design. Another
model, called the context-free grammar, is used in
programming languages and artificial
intelligence. Automata theory is an excellent place to begin
the study of the theory of computation. The theories of
computability and complexity require a precise definition
of a computer. Automata theory allows practice with
formal definitions of computation as it introduces concepts
relevant to other non theoretical areas of computer science.

2. FINITE STATE AUTOMATA

2.1 ALPHABETS AND LANGUAGES
It is convenient to consider a set of finite length

strings over some fixed finite alphabet to discuss finite
state automata and regular expressions. An alphabet is any
finite set. The arbitrary finite alphabet is denoted by the
Greek letter C. The elements of ∑ are called the symbols
and usually denote them by a, b, c, …, or 0, 1. Any finite
length sequence w of symbols over the alphabet ∑ is
called a string over ∑ . The number of symbols in w is

the length of the string and is denoted by w . A string of

length 0 over any alphabet ∑ is called null string and
denoted by symbol ε (epsilon). The set of all strings
(includingε) over an alphabet ∑ is denoted as ∗∑ . If

∑ is non-empty, then ∗∑ is an infinite set of finite length

strings. Any subset of ∗∑ is called a language over ∑ .

2.2 Finite State Automata
Let ∑ be a finite alphabet. An automaton over ∑ is a 5–

tuple (), , , ,A Q I Fδ= ∑ where Q is a set of states, I

is a subset of Q whose elements are called the initial
states, F is a subset of Q whose elements are called final

states, δ is called transition function defined from the

Cartesian product Q×∑ to Q . The triplet (), , 'q a q ,

where (), 'q a qδ = is called an edge, and the sequence

()1, , , 1, 2,...,i i iq a q i n+ = of consecutive edges is

called a path. Then the word 1 2.... nw a a a= is called the
label of the path. A word w is said to be accepted by the
automaton A if there is a path with label w such that

1q I∈ and 1nq F+ ∈ . The set of all words accepted by an

automaton A is called the language recognized by A . It is
denoted by ()L A .
2.2.1 Definition

i. An Automaton A is called trim if for all
q Q∈ there is at least one path through q
beginning at an initial state and ending at a final
state.

ii. An automaton A is called deterministic (DFA)
if there is only one initial state and if for all

(),q a Q∈ ×∑ , there is at most one state 'q

such that (), 'q a qδ = , otherwise the

automaton is called non-deterministic (NFA).

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 04 2015 www.researchscript.com 12

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

iii. An automaton is called standard or non-returning
if there is only one initial state and there is no
edge having the initial state on tail.

An automaton is also represented as a directed
graph where each node represents a state and there is an
arc labeled by an input symbol between the nodes. The
initial states are denoted with the word start and final
states are denoted by concentric circles.

For example, the various types of automata and the
language they recognize are given below.

2.2.2 Examples

i. The automaton recognizing the language of 0’s
and 1’s that begin with 01 or ends with 01, both is
given below.

 The above automaton is a trim, as well as DFA

and standard.

ii. The following automaton is an NFA
recognizing the language of a’s and b’s that end
with ab.

iii. The following is a DFA recognizing the

language
/

0 ' 1'
w w has botheven number of

L
s and even number of s


= 


over the alphabet { }0,1∑ = . This is not a

standard automaton.

iv. The following is a DFA, but not trim which
recognizing the language of 0’s and 1’s and that
begins with 0, and end with 01.

2.3 CONSTRUCTION OF FINITE STATE AUTOMATA
 The construction of FSA in general and the DFA in
particular so as to accept the given language exactly is an
interesting feature in the area of automata theory [3].
Naturally, the construction of NFA is quite simple, as it is
assumed that NFA have the capability to guess something
about input given, whereas a clear procedure is very much
required to construct DFA so that the given DFA accepts
only the strings for which it has been constructed, and
rejects for all other strings. By rejection, it is meant that
the process will not lead to final state when such strings
are given as input.
 As an example, let us construct a DFA that
recognize the language of all strings with three
consecutive zeros not necessarily at the end over the
alphabet { }0,1∑ = . It can be seen that the strings over

the given ∑ based on the given specifications can be
classified as

i. The string processed so far has three consecutive
0’s

ii. The string processed so far has two consecutive 0’s
iii. The string processed so far has only one 0
iv. The string processed so far has no 0’s

 Thus, we need four states corresponding to these
four cases. Among these, the state corresponding to the
case of strings that is far away from the required form is
assumed as the start state and the state representing the
strings of the given language is assumed as the final state.
In this example, we designate the states representing case
iv and case i as start state 0q and the final state 3q
respectively. Since, case ii is nearer to case i and case iii is
nearer to case iv, they are to be represented as the states 2q

and 1q respectively. Initially, let the DFA is at 0q that is it
has processed the strings having no 0’s. Therefore, if the
next input to be processed is 0, then we get a string from
case iv to case iii, i.e., the DFA is at 0q is to move from

0q to 1q on input 0. But, if 1 is the input, then again we
have the same string of no 0’s. i.e., the string of case iv.

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 04 2015 www.researchscript.com 13

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

Therefore the DFA should remain at 0q itself for the input

0. Thus, we define the transition function δ which directs

the moves of the DFA at 0q as ()0 1,0q qδ = and

()0 0,1q qδ = . Next, let us assume that the DFA is at 1q ,

i.e., the DFA is at 1q after processing the string that ends
with a single 0. Therefore, if again 0 is the input then we
get a string of case ii or if 1 is the input, we get a string of
case iv. Thus, the DFA should move from 1q to 2q if 0 is

the input or it should move from 1q to 0q if 1 is the input.

Thus, the δ at 1q is defined as ()1 2,0q qδ = and

()1 0,1q qδ = . To define δ at 2q , we assume that the

DFA is at 2q after processing the string that ends with 00.
If the next input is 0, we get the required string having
three consecutive 0’s but, if 1 is the input, we are at having
a string of case iv, i.e., the string that ends with 1. Thus, we
define δ at 2q as ()2 3,0q qδ = and ()2 0,1q qδ = .

Finally, assume that the DFA is at 3q . It means that the
DFA has already encountered the string consisting three
consecutive 0’s. Therefore, it will accept all the strings
irrespective of the next inputs. Thus, we define δ at 3q as

()3 3,0q qδ = and ()3 3,1q qδ = . Thus, the DFA

accepting the given languages is ()0, , , ,D Q q Fδ= ∑

where { }0 1 2 3, , ,Q q q q q= ; { }0,1∑ = , 0q is the start

state; { }3F q= and is defined as

() () () ()
() () () ()

0 1 0 0 1 2 1 0

2 3 2 0 3 3 3 3

, 0 ; , 1 ; , 0 ; , 1
, 0 ; , 1 ; , 0 ; , 1

q q q q q q q q
q q q q q q q q

δ δ δ δ
δ δ δ δ

= = = =
= = = = .

The transition table is given by

 0 1

0q 1q 0q

1q 2q 0q

2q 3q 0q

3q * 3q 3q

The transition diagram is given below.

Similarly, one can easily construct the DFA that accepts
the language of strings of 0’s and 1’s that has 00 as a
substring as in the fig.

The above procedure has been extensively discussed in [3].
But this procedure will not suit for all types of languages.
For example, consider the language of binary strings
represent multiples of three. Here the strings are
0, 11, 110, 1001, 1100, 1111, 10010,.... It is hard to classify
the strings as done in the previous example. Hence the
strings are grouped, and the states are associated in the
following way.

if the number represented by
the string scanned so far is

then the DFA will
be in state

0 mod 3 0q

1 mod 3 1q

2 mod 3 2q

The transition diagram of the DFA is given below

Dexter C.Kozen [1] has proved by induction that the above
DFA accepts exactly the language of binary strings
represent multiples of three.

An approach was proposed by N.Murugesan and
B.Samyukthavarthini [4] in 2013. This procedure is more
helpful when the given set of strings do not possess any
generic nature. This approach provides a systematic way to
design a DFA from the easily constructed NFA’s. The
following are the steps involved in this approach.
Step 1

Identify the set 1B of basis strings of minimum
length of the given language L.
For example, if 1L is the language of strings of 0’s and 1’s

that consist at least two 0’s, then, the set 1B of basis

strings of minimum length is { }00 in case of the language

2L of strings of 0’s and 1’s that consist even number of

0’s and even number of 1’s, the set 1B of basis strings is

{ }, 00,11ε , where ε denotes the empty string.
Step 2

Design an NFA that accepts the strings of the set

1B . For the language 1L , the FA accepting 1B is

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 04 2015 www.researchscript.com 14

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

and for the language 2L , the NFA accepting 1B is

It can also be designed NFA, accepting 1B of 2L as

that too accepts ε , 00 and 11, but it also accepts the

strings
01 and 10 that are not in 2L . This is the point to be kept in
mind at every juncture of this type construction.
Step 3

If the NFA constructed in step 2 is a DFA, then
this is the DFA accepting L.
The above two NFA constructed for 1L and 2L are not
DFA. In the first case, the NFA not at all considering the
input 1 at any state and in the second case only 0q is the

complete state in the sense that the NFA moves to 1q and

2q for the inputs 0 and 1 respectively at 0q . The moves not

at all defined at 1q for the input 0 at 2q .
Step 4

If the NFA is not a complete NFA, then generate
the next set 2B of strings from the set 1B by incorporating
the minimum number of input symbols to each and every
element of 1B .

In the case of 1L , the set { }2B 000, 001, 010,100= and

for 2L , { }2B 0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111= .
Step 5

Modify the NFA constructed in step 2 that accepts
the set 2B together with 1B . It may accept some other
strings of L but that should not lead to accept the strings
not from the language L as discussed in step 2.

Step 6
If the modified NFA is a DFA, then it is the DFA

accepting the language L. Otherwise the above steps to be

repeated from step 4 and to generate the set B’s again and
again until a complete DFA, is obtained.
 It is quite surprising to see that a naturally defined
language in one way corresponds so closely to naturally
define a theoretical machine in another way. Is this merely
a coincidence? Whenever the NFA becomes the DFA, then
it accepts the entire language L not merely the set

1
Bn

ii= .

The modified NFA accepting the set 2B together with 1B

of 1L is

and the same for 2L is

Note that both NFA become DFA and see that they accept
the language 1L and 2L respectively. Now let us consider
another example which is little harder than the above two
examples.

Let
()0,1 / represents a multiple three

L
 in binary allowing leading 0’s

x x∗∈
=




 * indicates that the L contains empty string also.

 The following is the list of binary strings that
represents multiples of 3 and their decimal equivalent.

Let { }1B 0= . The NFA accepting 1B is

Let { }2B 11= . The NFA accepting 1 2B B∪ is

Binary Decimal
equivalent Binary Decimal

equivalent

0 11 1100 12

11 3 1111 15

110 6 10010 18

1001 9 10101 21

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 04 2015 www.researchscript.com 15

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

Let { }3B 110= . The NFA accepting 1 2 3B B B∪ ∪ is

This NFA accepts also the strings

() ()11000 24 , 110000 48 and so on .,= = … that are also

multiples of 3. Let { }4B 1001, 111= . In order to make
the NFA to accept 1001, the only possibility is that we
have to form a loop at 2q for the input 0. If we do it, then

it will also accept the string ()101 5= which is not a
multiple of 3. Therefore a complete reorganization of states
is necessary. The modified structure may be drawn as
follows.

Now consider { }5B 10010, 10101= , the NFA

already accepting 10010, and if we form a loop at 2q for
the input 1, then it will accept 10101 and also 101101
(=45), 1011101(=93), … and so on. These all are again
multiples of 3.

The important thing is that it has become a DFA and so
we can easily verify that it accepts exactly the given
language L.

As another example, let us consider the language L that

recognizes the multiples of 3 in the decimal system.
Initially, let { }1B 0, 3, 6, 9= and by intuition we realize
that the repeated symbols are also belongs to L. i.e., 000…,
333….666….999… are multiples of 3. Thus the NFA
accepting 1B is

{

}

2Let B 12, 15, 18, 21, 24, 27, 30, 33,
36, 39, 42, 45, 48, 51, 54, 57,
60, 63, 66, 69, 72, 75, 78,

 81, 84, 87, 90, 93, 96, 99

=

 The FA accepting 1 2B B∪ is

The above NFA also recognize the numbers that

end with 0, 3, 6, 9 from third digit onwards.
{

}

3If B = 102, 105, 108, 111, 114, 117, 120, 123,

126, 129, 132, 135, 138, 141, 144, 147,
150, 153, 156, 159, 162, 165, 168, 171, 174,

177, 180, 183, 186, 189, 192, 195, 198

 then the NFA accepting 1 2 3B B B∪ ∪ is

{

}

4Let B 201, 204, 207, 210, 213, 216, 219, 222,

225, 228, 231, 234, 237, 240, 243, 246, 249,

252, 255, 258, 261, 264, 267, 270, 273, 276,

279, 282, 285, 288, 291, 294, 297, 300

=

The NFA accepting 1 2 3 4B B B B∪ ∪ ∪ is

 The NFA becomes a DFA, and it accepts all the
 numbers of multiples of 3. For example, let us check
 this for the number 37068.

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 04 2015 www.researchscript.com 16

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

Since 0q is the final state, 37098 is a multiple of 3.

3 CONCLUSION

 In this paper, the languages of binary strings representing
DFA have been discussed. From the NFA construction,
An approach proposed by N.Murugesan et al., is more
helpful when the given set of strings do not possess any
generic nature.

 REFERENCES

[1]. Dexter C. Kozen, Automata and Computability,
Springer-Verlag, New York, Inc., 1977.

[2]. Hopcroft J.E and Ullman J.D, , Introduction to
Automata Theory, Languages and Computation,
Addison – Wesley, 1979.

[3]. Murugesan N, Principles of Automata theory and
Computation, 2004, Sahithi Publications.

[4]. Murugesan N, and Samyukthavarthini B, A Study on
Various types of Automata, M.Phil., Dissertation,
Bharathiar University, 2013.

[5]. Yu S, Regular Languages, in: A.Salaomaa, eds.,
Handbook of Formal Languages, Vol. I, Springer-
Verlag, Berlin, 1997, 41 – 110.

Input Current
state Input Current

state

- 0q 0 1q

3 0q 6 1q

7 1q 8 0q

IJRCS - International Journal of Research in Computer Science
Volume: 02 Issue: 04 2015 www.researchscript.com 17

	Introduction
	FINITE STATE AUTOMATA
	2.1 Alphabets and Languages
	Finite State Automata
	References

