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Abstract— Short Message Services such as Tweets are created and shared in an outré rate. Raw form of tweets is newsy and also 
paralyzing. Tweets contain blimp of raspy and superfluity for both end users and data begetter. A novel continuous summarization 
skeleton called Sumblr (continuouS sUMmarization By stream cLusteRing) to overcome the problem. Here multi topic version of Sumblr 
is used for summarizing and clustering of large datasets in a Distributed System. Traditional summarization methods were focused on 
static and small scale datasets in a single system. But Sumblr is designed to deal with dynamic, fast arriving and large scale datasets. 
Three major components are proposed in the framework; first the tweets are clustered using tweet stream clustering algorithm and 
maintain clear statistics in an data structure called Tweet Cluster Vector (TCV), Second a TCV-Rank Summarization technique is 
developed for generating online and historical summaries of arbitrary time durations, Third an effective topic evolution detection method 
is designed for monitoring summary based variations to produce timeline automatically. Experiments on large scale real tweets 
demonstrate the efficiency and effectiveness of the framework. 

Keywords— Tweet stream, continuous summarization, historical summary and online summary. 
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1.  INTRODUCTION (HEADING 1) 
 Social media services such as Twitter, Face book 
and Wechat resulted in the whump of short text messages. 
Twitter, for instance receives over 400 million tweets per 
day which involves invaluable source of news, blogs, 
opinions and more. Raw form of tweets is newsy and also 
paralyzing. For instance, search for a hot topic in Twitter 
may yield millions of tweets, spanning weeks. Many 
number of tweets are available, picking out the important 
contents would be ordeal. The emergence topics of tweets 
may be uncovered due to continuous arrival of new tweets 
at a difficult rate. A solution to information overload 
problem is summarization. Summarization represents a set 
of documents consisting of several sentences. Tweet 
summarization requires functionalities which differ from 
traditional summarization. Temporal feature of arriving 
tweets has also considered in tweet summarization. Let us 
illustrate using an example of usage of such a system. 
Consider a user interested in topic related tweet streams, 
for example, tweets about “Fastrack”. A tweet 
summarization system is continuously monitoring 
“Fastrack” related tweets producing a real time timeline of 
the tweet stream. As illustrated in Fig. Fig. 1, a user may 
explore tweets based on a timeline. Given a timeline range, 
the summarization system may produce a sequence of time 
stamped summaries to highlight points in the stream. The 
system will enable the user to learn major news/ discussion 
related to “Fastrack” without having entire tweet stream. 
Given the big picture about topic evolution about 
“Fastrack”. Drilldown and rollup summary is used. For this 
summarization the system supports the following two 
queries: summaries of arbitrary time duration and real 

time/range timelines. A new summarization method called 
continuous summarization is used. A good solution for 
continuous summarization has to address some problems 
(1) Efficiency, (2) Flexibility, (3) Topic evolution. Existing 
summarization method cannot satisfy the above three 
requirements because, they mainly focus on static and 
small sized datasets and hence are not efficient and scalable 
for large datasets and data streams.  
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    A Framework of Sumblr 
A novel summarization framework called Sumblr is used. 
The framework consists of three main components, they 
are the Stream Clustering module, the Large level 
Recapitulation module and the Timeline Compeers 
module. In tweet stream clustering module, a tweet stream 
clustering algorithm is designed, an online algorithm 
allowing for effective clustering of tweets. This algorithm 
employs two data structures. The first one is tweet cluster 
vector and the next one is pyramidal time frame. The high 
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level summarization model supports two kinds of 
summaries: online and previous summaries. (1)To produce 
online summaries, a TCV-Rank summarization algorithm 
is computed. (2)To compute historical summary, first 
retrieve two historical cluster snapshots from the PTF.  
The main contribution of this work is as follows: 
• A continuous tweet stream summarization 
           framework, namely Sumblr. 
• A novel data structure called PCV for stream 
          processing and TCV-Rank algorithm, different 
          summarization. 
• A topic evolution detection algorithm is proposed 
          which produces timelines. 
 
2   RELATED WORKS 
  
 In review related works it includes stream data 
clustering, document summarization, timeline detection, 
and other mining tasks. 
 
2.1 Stream Data Clustering 
 Stream data clustering has been widely studied in 
the literature. In BIRCH clusters, data is based on an in 
memory structure called CF tree. A growable clustering 
framework which chooses and stores important parts. 
CluStream is the most classical clustering methods. It 
consists of an online small clustering component and an 
offline large clustering component. The pyramidal time 
frame was also proposed to recall historical micro clusters 
for different time summaries. 
 A variety of services on the Web have posed 
requirements for text clustering. A few algorithms are 
proposed to handle the problem. some techniques adopt 
separation based techniques. These approach lose to 
provide efficient analysis on clusters formed at different 
time summaries. 
 CluStream is used to generate time based clustering, 
results for text and categorical data streams. This algorithm 
relies on an online phase to produce a large number of 
“micro clusters” and an offline phase to recluster them. In 
contrast, tweet clustering algorithm is an online method 
without clustering. And in the context of tweet 
summarization, adapt the online clustering phase by 
introducing the new structure TCV, and discarding the 
number of clusters to guarantee efficiency and quality 
TCVs. 

 
2.2 Document Summarization  
 Document summarization can be categorized in two 
summarization methods. The former selects sentences 
from the documents, while in turn generate phrases and 
sentences that may not present in the real documents. 
Extractive document summarization has gained many 
people attention. Most of them assign scores to sentences. 
Document summarization has been studied for years 
summarization is still in its infancy. All existing 
document summarization methods mainly deal with small 
and static data sets, and rarely pay attention to efficiency 

issues.  
 
2.3 Timeline Detection 

 The demand for analyzing massive contents in social 
media, fuels the development in visualization techniques. 
Timeline is a techniques which can perform analysis tasks 
easier and faster which made early efforts in this area, 
using timelines to explore the 2008 Presidential Debates 
by Twitter sentiment. The evolutionary timeline 
summarization (ETS) is used to compute evolution 
timelines similar to the timeline, which consists of a series 
of time stamped summaries. However, the dates of 
summaries are determined by a predefined timestamp set.  
 
3   PRELIMINARIES 

  
 A data model for tweets, introduces two important 
data structures: the tweet cluster vector and pyramidal 
time frame. 
 
3.1 Tweet Representation 

 Generally, a document is represented as a textual 
vector, where the value of each dimension is the TF-IDF 
score of a word. However, tweets are not only textual, but 
also have temporal nature; a tweet is strongly correlated 
with its posted time. In addition, the importance of a tweet 
is affected by the author’s social influence. To estimate 
the user influence, build a matrix based on social 
relationships among users, and compute the User Rank. A 
definition for a tweet ti as a tuple :( tvi, tsi, wi), where tvi is 
the textual vector, tsi is the posted time stamp and wi is the 
User Rank value of the tweet’s author 
 
3.2 Tweet Cluster Vector 

 During tweet stream clustering, it is necessary to 
maintain statistics for tweets to facilitate summary 
generation. A new data structure called tweet cluster 
vector, which keeps information of tweet cluster. 
Definition 1. For a cluster C containing tweets t1, t2, . . . , 
tn, its tweet cluster vector is defined as a tuple:  
TCV (C) = (sum _v, wsum _v, ts1, ts2, n, ft _set), where 

 
• sum _v=∑ tv𝑛𝑛

𝑖𝑖=1 i/||tvi|| is the sum of normalized  
           textual vectors. 
• wsum_v=∑ w𝑛𝑛

𝑖𝑖=1 i.tvi is the sum of weighted textual  
           vector. 
• ts1=∑ t𝑛𝑛

𝑖𝑖=1 si is the sum of timestamps. 
• ts2=� (t𝑛𝑛

𝑖𝑖=1 si )2 is the quadratic sum of timestamps, 
• n is the number of tweets in the cluster, 
• ft_set is a focus tweet set of size m, consisting of the 
          closest m tweets to the cluster centroid. 
 The form of sum_v is used for      ease of 
presentation. It only stores the identifiers and sums of 
values of the words occurring in the cluster. The same 
convention is used for wsum_v. To select tweets into 
ft_set, use cosine similarity as the distance metric. 
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 From the definition, derivation for the vector of 
cluster centroid (denoted as cv)           

cv= (∑ w𝑛𝑛
𝑖𝑖=1 i.tvi  )/n=wsum_v/n 

The definition of TCV is an extension of the cluster feature 
vector. Besides information of data points (textual vectors), 
TCV includes temporal information and representative 
original tweets. TCV structure can also be updated in an 
incremental manner when new tweets arrive. 
 
3.3 Pyramidal Time Frame 
 To support summarization over user defined time 
durations, it is crucial to store the maintained TCVs at 
particular moments, which are called snapshots. While 
storing snapshots at every moment is impractical due to 
huge storage overhead, insufficient snapshots make it hard 
to recall historical information for different durations. This 
dilemma leads to the incorporation of the pyramidal time 
frame. 
Definition 2. A pyramidal time frame stores snapshots at 
differing levels of granularity depending on the recency. 
Snapshots are stored into different orders varying from 0 to 
[logα (T)], where T is the time elapsed since the beginning 
of the stream and a is an integer (α> 1). A particular order 
of snapshots defines the level of granularity in time at 
which the snapshots are maintained. The snapshots of 
different orders are maintained as follows: 
• Snapshots of the ith order occur at time intervals of αi  
              each snapshot of the ith order is taken at a moment in 
           time when the timestamp from the beginning of the 
           stream is exactly divisible by αi. 
• At any given moment in time, only the last  
           αl +1(l>=1) snapshots of order i are stored. 
 According to the definition, PTF has two properties: 
(1)The maximum order of any snapshot stored at 
timestamp T since the beginning of the stream is logα(T); 
(2) The maximum number of snapshots maintained at T is 
(αl+1)*logα(T). These properties are crucial for system 
performance. Taking more snapshots (by using a larger α 
or l) offers better accuracy of time duration approximation, 
but mean while causes larger storage overhead. A need to 
strike a balance between duration accuracy and storage 
space. It is only maintain the current clusters in main 
memory, and store all historical snapshots in the PTF on 
disk. 
 
4   THE SUMBLR FRAMEWORK 
 Framework consists of three main modules: the 
tweet stream clustering module, the high level 
summarization module and the timeline generation module. 
Each of them are given in detail. 
 
4.1 Tweet Stream Clustering 
 The tweet stream clustering module maintains the 
online statistical data. Given a topic based tweet stream, it 
is able to efficiently cluster the tweets and maintain 
compact cluster information. 
 
 

4.1.1 Initialization 
 At the start of the stream, collect a small number of 
tweets and use a k-means clustering algorithm to create the 
initial clusters. The corresponding TCVs are initialized 
according to Definition 1. Next, the stream clustering 
process starts to incrementally update the TCVs whenever 
a new tweet arrives. 
 
4.1.2 Incremental Clustering 
 Suppose a tweet t arrives at time ts, and there are N 
active clusters at that time. The key problem is to decide 
whether to absorb t into one of the current clusters or 
upgrade t as a new cluster. First find the cluster whose 
centroid is the closest to t. specifically, we get the centroid 
of each cluster, compute its cosine similarity to t, and find 
the cluster Cp with the largest similarity (denoted as 
MaxSim (t)). Note that although Cp is the closest to t, it 
does not meant naturally belongs to Cp. The reason is that t 
may still be very distant from Cp. In such case, a new 
cluster should be created. Note that although Cp is the 
closest to t, it does not meant naturally belongs to Cp. The 
reason is that t may still be very distant from Cp. In such 
case, a new cluster should be created. 

Algorithm 1 describes the overview of incremental 
clustering procedure. 
 
Algorithm 1  
 
Input: a cluster set C_set 
1 while! stream.end() do 
2   Tweet t= stream.next(); 
3   choose Cp in C_set whose centroid is   
     closest to it; 
4   if MaxSim (t) < MBS then 
5    create a new cluster Cnew = {t}; 
6    C_set.add (Cnew); 
7   else 
8    update Cp with t; 
9   if TScurrent %( αi) ==0 then 
10  store C_set into PTF; 

  
 During incremental clustering, assume there are N 
active clusters, the computational cost of finding the 
closest cluster for every new tweet is O (Nd), where d is 
the vocabulary size. In addition, the complexity of 
computing and updating TCV is O (d) and O (md) 
respectively, where m is the size of focus set. Then the total 
cost is O ((N+m) d). Because m and d are static, the 
computational cost depends on N. Similarly, the storage 
costs in disk (TCV snapshots) and memory (current TCVs) 
also depend on N. 
 Given the above analysis, g outdated clusters and 
merging similar clusters. Since the computational 
complexity of deletion is O (N) and that of merging is O 
(N2), use the former method for periodical examination and 
use the latter method only when memory limit is reached. 

4.1.3 Deleting Outdated Clusters 
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 For most events in tweet streams, timeliness is 
important because they usually do not last for a long time. 
Therefore it is safe to delete the clusters representing these 
sub topics when they are rarely discussed. To find out such 
clusters, an intuitive way is to estimate the average arrival 
time (denoted as Avgp) of the last p percent of tweets in a 
cluster. However, storing p percent of tweets for every 
cluster will increase memory costs, especially when 
clusters grow big. Thus, employ an approximate method to 
get Avg. 
 
4.1.4 Merging Clusters 
 If the number of clusters keeps increasing with few 
deletions, system memory will be exhausted. To avoid this, 
specify an upper limit for the number of clusters as Nmax. 
When the limit is reached, a merging process starts. The 
process merges clusters in a greedy way. First, sort all 
cluster pairs by their centroid similarities in a descending 
order. Then, starting with the most similar pair, try to 
merge two clusters in it. When both clusters are single 
clusters which have not been merged with other clusters, 
they are merged into a new composite cluster. When one of 
them belongs to a composite cluster (it has been merged 
with others before), the other is also merged into that 
composite cluster. When both of them have been merged, if 
they belong to the same composite cluster, this pair is 
skipped; otherwise, the two composite clusters are merged 
together. This process continues until there are only mc 
percentage of the original clusters left (mc is a merging 
coefficient which provides a balance between available 
memory space and the quality of remaining clusters). 
Definition 3 (Aggregation Operation). Let C1 and C2 be 
two clusters and their TCVs be TCV (C1) and TCV (C2). 
When C1and C2 are merged together, the composite 
cluster’s TCV (C1 Ụ C2) is given by 
• sum_v=sum_v1+sum_v2 
• wsum_v=wsum_v1+wsum_v2 
• ts1=ts11+ts12 
• ts2=ts21+ts22 
• n=n1+n2 
• ft_set consists of the first m tweets in ft_set1U 
ft_set2  
             , sorted by distance to the centroid. 
 
4.2 High-Level Summarization 
     The high-level summarization module provides 
two types of summaries: online and historical summaries. 
An online summary describes what is currently discussed 
among the public. Thus, the input for generating online 
summaries is retrieved directly from the current clusters 
maintained in memory. On the other hand, a historical 
summary helps people understand the main happenings 
during a specific period, which means the need to eliminate 
the influence of tweet contents from the outside of that 
period. As a result, retrieval of the required information for 
generating historical summaries is more complicated, and 
this shall be on focusing on the following discussion. 
Suppose the length of user defined time duration is H, and 

the ending timestamp of the duration is tse. From PTF, it 
can retrieve two snapshots whose timestamps are either 
equal to or right before tse and tse _ H, respectively. Denote 
the timestamps by ts1 and ts2, and their cluster sets by S 
(ts1) and S(ts2). Now the original duration [tse _ H, tse] is 
approximated by [ts2, ts1] 
Definition 4 (Subtraction Operation). Given a cluster C1 
in S (ts1) and its corresponding cluster C2 in S (ts2), when 
C2 is subtracted from C1, their difference TCV (C1 - C2) is 
given by 
• sum _v1 = sum_v1- sum_v2 
• wsum_v = wsum_v1-wsum_v 
• ts1=ts11 -ts12 
• ts2 =ts21- ts22 
• n= n1-n2 
• ft_set consists of tweets which exist in ft_set1 but 
not in  ft_set2. 
 The above process eliminates the influence of 
clusters created before ts2 on summary results. The final set 
of clusters after this process is the input for historical 
summarization. 

TCV-Rank Summarization Algorithm 
  Given an input cluster set, to denote its 
corresponding TCV set as D(c). A tweet set T consists of 
all the tweets in the ft_sets in D(c). The tweet 
summarization problem is to extract k tweets from T, so 
that they can cover as many tweet contents as possible. 
Let us first describe this problem formally. Denote F = 
{T1, T2,.., Tt} as a collection of non empty subsets of T, 
where a subset Ti represents a sub topic and |Ti| means the 
number of its related tweets. Suppose for each Ti, there is 
a tweet which represents the content of Ti’s sub topic. 
Then, selecting k tweets is equivalent to selecting k 
subsets. 

 
 Algorithm 2. TCV-Rank Summarization 

 
       Input: a cluster set D(c) 
       Output: a summary set S 
1 S =ǿ , T={all the tweets in ft_sets of  D(c)}; 
2 Build a similarity graph on T; 
3     Compute LexRank scores LR; 

   4      Tc = {tweets with the highest LR in each cluster}; 
5     while |S| < L do 
6     foreach tweet ti in Tc _ S do 
7     calculate vi according to Equation  
          (2); 
8     select tmax with the highest vi; 
9     S.add (tmax); 
10   while |S| < L do 
11   foreach tweet t’i in T _ S do 
12   calculate v’i according to Equation            
13   select t’max with the highest v’i; 
14   S.add (t’max); 
15    returns S; 

  
 To design a greedy algorithm to select representative 
tweets to form summaries (Algorithm 2). First, build a 
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cosine similarity graph for all the tweets in T. The 
maximum size of T is N _ m, where N is the number of 
clusters in D(c) and m is the size of ft_set. It is the upper 
bound because ft sets of some clusters (e.g., small clusters 
or clusters newly created) may not be full. Next, apply the 
LexRank method to compute centrality scores for tweets. 
LexRank is an effective static summarization method and 
is efficient for small sized data sets. But when data sets 
become large, its efficiency drops quickly. The tweet set T 
has at most Nm tweets (usually hundreds or thousands), so 
LexRank is suitable for the situation. 
 
4.3 Timeline Generation 
  The core of the timeline generation module is a 
topic evolution detection algorithm which produces real 
time and range timelines in a similar way. The algorithm 
discovers sub topic changes by monitoring quantified 
variations during the course of stream processing. A large 
variation at a particular moment implies a sub topic 
change, which is a new node on the timeline. The main 
process is described in Algorithm 3. First bin the tweets by 
time (e.g., by day) as the stream proceeds. This sequenced 
binning is used as input of the algorithm. Then, loop 
through the bins and. append new timeline nodes whenever 
large variations are detected. Key problem is how to define 
the variation and detect when it becomes large. It describes  
three different kinds of variations and their detection 
methods. 

 
Algorithm 3. Topic Evolution Detection 

 
Input: a tweet stream binned by time  
           units 
Output: a timeline node set TN 
1:  TN=ǿ; 
2:  while !stream.end () do 
3:     Bin Ci= stream.next (); 
4:     if hasLargeVariation () then 
5:       TN.add (i); 
6:  return TN; 

  
  In this algorithm, the key problem is how to 
define the variation and detect when it becomes large. In 
what follows, will describe three different kinds of 
variations and their detection methods respectively. 
 
4.3.1 Summary-Based Variation 
    As tweets arrive from the stream, online 
summaries are produced continuously by utilizing online 
cluster statistics in TCVs. This allows for generation of a 
real time timeline. Generally, when an obvious variation 
occurs in the main contents discussed in tweets (in the form 
of summary), can expect a change of sub topic (i.e., a time 
node on the timeline). 
 
4.3.2 Volume-Based Variation 

Though the summary-based variation can reflect 
sub-topic changes, some of them may not be influential 

enough. Since many tweets are related to users’ daily life 
or trivial events, a sub topic change detected from textual 
contents may not be significant enough. Consider the use 
of rapid increases (or “spikes”) in the volume of tweets 
overtime, which is a common technique in existing online 
event detection systems. A spike suggests that something 
important just happened because many people found the 
need to comment on it. Develop a spike finding method. As 
the input, the binning process in Algorithm 3 needs to 
count the tweet arrival volume in each time unit. 
 
5   EXPERIMENTS 
 To evaluate the performance of Sumblr, present the 
experiments for summarization and timeline generation 
respectively. 
 
5.1 Experiments for Summarization 
5.1.1 Setup 
 Data Sets: Construct five data sets to evaluate 
summarization. One is obtained by conducting keyword 
filtering on a large Twitter data set used. The other four 
include tweets acquired during one month in 2012 via 
Twitter’s keyword tracking API.4 ,do not have access to 
the respective users’ social networks for these four, set 
their weights of tweets wi to the default value of 1. 
1. Given time duration, first retrieve the corresponding 
tweet subset, and use the following three well recognized 
summarization algorithms to get three candidate 
summaries. ClusterSum clusters the tweets and picks the 
most weighted tweet from each cluster to form summary. 
LexRank [11] first builds a sentence similarity graph, and 
then selects important sentences based on the concept of 
Eigen vector centrality. DSDR models the relationship 
among sentences using linear reconstruction, and finds an 
optimal set of sentences to approximate the original 
documents, by minimizing the reconstruction error. 
2. Next, for each subset, the final reference summary is 
extracted from three candidate summaries by using a 
voting scheme. The intuition is that if a specific tweet and 
its similar tweets appear many times in the candidate 
summaries, they can represent important content and 
should be chosen into the final summary. Specifically, for 
each tweet in each candidate summary, compute its 
similarities to the tweets from the other two candidate 
summaries. Then, the tweet votes to its most similar one 
and these two tweets form a “pair”. After processing all the 
tweets in candidate summaries, sort them in descending 
order of their total votes. Delete the tweets whose pair 
members already exist at higher ranks. In each window 
contains a certain number (window size) of tweets which 
are summarized as a document. After that, the window 
moves forward by a step size, so that the oldest tweets are 
discarded and the new ones are added into the window. In 
this way, implement the sliding window version of the 
above three algorithms, namely ClusterSum, LexRank, and 
DSDR. The windows are dimensioned by number of tweets 
instead of time duration, because the number of tweets may 
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vary dramatically across fixed length durations, leading to 
very poor performance of the baseline algorithms. 

5.1.2 Flexibility  
 Feature of Sumblr is the flexibility to summarize 
tweets over arbitrary time durations. This feature is 
provided by incorporating the PTF. The effectiveness of 
PTF depends on a and l. Fix a at 2 and show the results 
varying l. For consistency, extract a subset of one month 
period from each data set as the input stream. The interval 
between two successive snapshots (timestamp unit) is one 
hour. For a timestamp ts, evaluate the results for different 
durations with length len varying from 1 to 10 days. Report 
the average F-score score (ts) by interval of 48 hours. 
 
 6   CONCLUSION 
  A prototype called Sumblr which supported 
continuous tweet stream summarization. Sumblr employs a 
tweet stream clustering algorithm to compress tweets into 
TCVs and maintains them in an online fashion. Then, it 

uses a TCV-Rank summarization algorithm for generating 
online summaries and historical summaries with arbitrary 
time durations. The topic evolution can be detected 
automatically, allowing Sumblr to produce dynamic 
timelines for tweet streams.  
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