
 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

 TIMELINE GENERATION AND
RECAPITULATION OF PROGRESSIVE TWEET

STREAMS IN A DISTRIBUTED SYSTEM
Amila.H1 | Kirthana.S2| Nithra.G3| Neelamegam.G4

1(Department of Computer science and Engineering, Chennai, India, amila7280@gmail.com)
2(Department of Computer science and Engineering, Chennai, India, kirthanaviews@gmail.com)

3(Department of Computer science and Engineering, Chennai, India, nithu.sekar635@gmail.com)
4(Department of Computer science and Engineering, Chennai, India, gneelamegham@gmail.com)

Abstract— Short Message Services such as Tweets are created and shared in an outré rate. Raw form of tweets is newsy and also
paralyzing. Tweets contain blimp of raspy and superfluity for both end users and data begetter. A novel continuous summarization
skeleton called Sumblr (continuouS sUMmarization By stream cLusteRing) to overcome the problem. Here multi topic version of Sumblr
is used for summarizing and clustering of large datasets in a Distributed System. Traditional summarization methods were focused on
static and small scale datasets in a single system. But Sumblr is designed to deal with dynamic, fast arriving and large scale datasets.
Three major components are proposed in the framework; first the tweets are clustered using tweet stream clustering algorithm and
maintain clear statistics in an data structure called Tweet Cluster Vector (TCV), Second a TCV-Rank Summarization technique is
developed for generating online and historical summaries of arbitrary time durations, Third an effective topic evolution detection method
is designed for monitoring summary based variations to produce timeline automatically. Experiments on large scale real tweets
demonstrate the efficiency and effectiveness of the framework.

Keywords— Tweet stream, continuous summarization, historical summary and online summary.
__

1. INTRODUCTION (HEADING 1)
 Social media services such as Twitter, Face book
and Wechat resulted in the whump of short text messages.
Twitter, for instance receives over 400 million tweets per
day which involves invaluable source of news, blogs,
opinions and more. Raw form of tweets is newsy and also
paralyzing. For instance, search for a hot topic in Twitter
may yield millions of tweets, spanning weeks. Many
number of tweets are available, picking out the important
contents would be ordeal. The emergence topics of tweets
may be uncovered due to continuous arrival of new tweets
at a difficult rate. A solution to information overload
problem is summarization. Summarization represents a set
of documents consisting of several sentences. Tweet
summarization requires functionalities which differ from
traditional summarization. Temporal feature of arriving
tweets has also considered in tweet summarization. Let us
illustrate using an example of usage of such a system.
Consider a user interested in topic related tweet streams,
for example, tweets about “Fastrack”. A tweet
summarization system is continuously monitoring
“Fastrack” related tweets producing a real time timeline of
the tweet stream. As illustrated in Fig. Fig. 1, a user may
explore tweets based on a timeline. Given a timeline range,
the summarization system may produce a sequence of time
stamped summaries to highlight points in the stream. The
system will enable the user to learn major news/ discussion
related to “Fastrack” without having entire tweet stream.
Given the big picture about topic evolution about
“Fastrack”. Drilldown and rollup summary is used. For this
summarization the system supports the following two
queries: summaries of arbitrary time duration and real

time/range timelines. A new summarization method called
continuous summarization is used. A good solution for
continuous summarization has to address some problems
(1) Efficiency, (2) Flexibility, (3) Topic evolution. Existing
summarization method cannot satisfy the above three
requirements because, they mainly focus on static and
small sized datasets and hence are not efficient and scalable
for large datasets and data streams.

 Online clusters
Historical clusters

 A Framework of Sumblr
A novel summarization framework called Sumblr is used.
The framework consists of three main components, they
are the Stream Clustering module, the Large level
Recapitulation module and the Timeline Compeers
module. In tweet stream clustering module, a tweet stream
clustering algorithm is designed, an online algorithm
allowing for effective clustering of tweets. This algorithm
employs two data structures. The first one is tweet cluster
vector and the next one is pyramidal time frame. The high

 Tweet stream clustering

 High level summarization

 Timeline generation

Tweet
cluster
vector

Pyramid
al time
frame

Online
summaries

Historical
summaries

Topic evolution detection

Tweet
stream

IJRCS - International Journal of Research in Computer Science
Volume: 03 Issue: 02 2016 www.researchscript.com 17

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

level summarization model supports two kinds of
summaries: online and previous summaries. (1)To produce
online summaries, a TCV-Rank summarization algorithm
is computed. (2)To compute historical summary, first
retrieve two historical cluster snapshots from the PTF.
The main contribution of this work is as follows:
• A continuous tweet stream summarization
 framework, namely Sumblr.
• A novel data structure called PCV for stream
 processing and TCV-Rank algorithm, different
 summarization.
• A topic evolution detection algorithm is proposed
 which produces timelines.

2 RELATED WORKS

 In review related works it includes stream data
clustering, document summarization, timeline detection,
and other mining tasks.

2.1 Stream Data Clustering
 Stream data clustering has been widely studied in
the literature. In BIRCH clusters, data is based on an in
memory structure called CF tree. A growable clustering
framework which chooses and stores important parts.
CluStream is the most classical clustering methods. It
consists of an online small clustering component and an
offline large clustering component. The pyramidal time
frame was also proposed to recall historical micro clusters
for different time summaries.
 A variety of services on the Web have posed
requirements for text clustering. A few algorithms are
proposed to handle the problem. some techniques adopt
separation based techniques. These approach lose to
provide efficient analysis on clusters formed at different
time summaries.
 CluStream is used to generate time based clustering,
results for text and categorical data streams. This algorithm
relies on an online phase to produce a large number of
“micro clusters” and an offline phase to recluster them. In
contrast, tweet clustering algorithm is an online method
without clustering. And in the context of tweet
summarization, adapt the online clustering phase by
introducing the new structure TCV, and discarding the
number of clusters to guarantee efficiency and quality
TCVs.

2.2 Document Summarization
 Document summarization can be categorized in two
summarization methods. The former selects sentences
from the documents, while in turn generate phrases and
sentences that may not present in the real documents.
Extractive document summarization has gained many
people attention. Most of them assign scores to sentences.
Document summarization has been studied for years
summarization is still in its infancy. All existing
document summarization methods mainly deal with small
and static data sets, and rarely pay attention to efficiency

issues.

2.3 Timeline Detection

 The demand for analyzing massive contents in social
media, fuels the development in visualization techniques.
Timeline is a techniques which can perform analysis tasks
easier and faster which made early efforts in this area,
using timelines to explore the 2008 Presidential Debates
by Twitter sentiment. The evolutionary timeline
summarization (ETS) is used to compute evolution
timelines similar to the timeline, which consists of a series
of time stamped summaries. However, the dates of
summaries are determined by a predefined timestamp set.

3 PRELIMINARIES

 A data model for tweets, introduces two important
data structures: the tweet cluster vector and pyramidal
time frame.

3.1 Tweet Representation

 Generally, a document is represented as a textual
vector, where the value of each dimension is the TF-IDF
score of a word. However, tweets are not only textual, but
also have temporal nature; a tweet is strongly correlated
with its posted time. In addition, the importance of a tweet
is affected by the author’s social influence. To estimate
the user influence, build a matrix based on social
relationships among users, and compute the User Rank. A
definition for a tweet ti as a tuple :(tvi, tsi, wi), where tvi is
the textual vector, tsi is the posted time stamp and wi is the
User Rank value of the tweet’s author

3.2 Tweet Cluster Vector

 During tweet stream clustering, it is necessary to
maintain statistics for tweets to facilitate summary
generation. A new data structure called tweet cluster
vector, which keeps information of tweet cluster.
Definition 1. For a cluster C containing tweets t1, t2, . . . ,
tn, its tweet cluster vector is defined as a tuple:
TCV (C) = (sum _v, wsum _v, ts1, ts2, n, ft _set), where

• sum _v=∑ tv𝑛𝑛

𝑖𝑖=1 i/||tvi|| is the sum of normalized
 textual vectors.
• wsum_v=∑ w𝑛𝑛

𝑖𝑖=1 i.tvi is the sum of weighted textual
 vector.
• ts1=∑ t𝑛𝑛

𝑖𝑖=1 si is the sum of timestamps.
• ts2=� (t𝑛𝑛

𝑖𝑖=1 si)2 is the quadratic sum of timestamps,
• n is the number of tweets in the cluster,
• ft_set is a focus tweet set of size m, consisting of the
 closest m tweets to the cluster centroid.
 The form of sum_v is used for ease of
presentation. It only stores the identifiers and sums of
values of the words occurring in the cluster. The same
convention is used for wsum_v. To select tweets into
ft_set, use cosine similarity as the distance metric.

IJRCS - International Journal of Research in Computer Science
Volume: 03 Issue: 02 2016 www.researchscript.com 18

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

 From the definition, derivation for the vector of
cluster centroid (denoted as cv)

cv= (∑ w𝑛𝑛
𝑖𝑖=1 i.tvi)/n=wsum_v/n

The definition of TCV is an extension of the cluster feature
vector. Besides information of data points (textual vectors),
TCV includes temporal information and representative
original tweets. TCV structure can also be updated in an
incremental manner when new tweets arrive.

3.3 Pyramidal Time Frame
 To support summarization over user defined time
durations, it is crucial to store the maintained TCVs at
particular moments, which are called snapshots. While
storing snapshots at every moment is impractical due to
huge storage overhead, insufficient snapshots make it hard
to recall historical information for different durations. This
dilemma leads to the incorporation of the pyramidal time
frame.
Definition 2. A pyramidal time frame stores snapshots at
differing levels of granularity depending on the recency.
Snapshots are stored into different orders varying from 0 to
[logα (T)], where T is the time elapsed since the beginning
of the stream and a is an integer (α> 1). A particular order
of snapshots defines the level of granularity in time at
which the snapshots are maintained. The snapshots of
different orders are maintained as follows:
• Snapshots of the ith order occur at time intervals of αi
 each snapshot of the ith order is taken at a moment in
 time when the timestamp from the beginning of the
 stream is exactly divisible by αi.
• At any given moment in time, only the last
 αl +1(l>=1) snapshots of order i are stored.
 According to the definition, PTF has two properties:
(1)The maximum order of any snapshot stored at
timestamp T since the beginning of the stream is logα(T);
(2) The maximum number of snapshots maintained at T is
(αl+1)*logα(T). These properties are crucial for system
performance. Taking more snapshots (by using a larger α
or l) offers better accuracy of time duration approximation,
but mean while causes larger storage overhead. A need to
strike a balance between duration accuracy and storage
space. It is only maintain the current clusters in main
memory, and store all historical snapshots in the PTF on
disk.

4 THE SUMBLR FRAMEWORK
 Framework consists of three main modules: the
tweet stream clustering module, the high level
summarization module and the timeline generation module.
Each of them are given in detail.

4.1 Tweet Stream Clustering
 The tweet stream clustering module maintains the
online statistical data. Given a topic based tweet stream, it
is able to efficiently cluster the tweets and maintain
compact cluster information.

4.1.1 Initialization
 At the start of the stream, collect a small number of
tweets and use a k-means clustering algorithm to create the
initial clusters. The corresponding TCVs are initialized
according to Definition 1. Next, the stream clustering
process starts to incrementally update the TCVs whenever
a new tweet arrives.

4.1.2 Incremental Clustering
 Suppose a tweet t arrives at time ts, and there are N
active clusters at that time. The key problem is to decide
whether to absorb t into one of the current clusters or
upgrade t as a new cluster. First find the cluster whose
centroid is the closest to t. specifically, we get the centroid
of each cluster, compute its cosine similarity to t, and find
the cluster Cp with the largest similarity (denoted as
MaxSim (t)). Note that although Cp is the closest to t, it
does not meant naturally belongs to Cp. The reason is that t
may still be very distant from Cp. In such case, a new
cluster should be created. Note that although Cp is the
closest to t, it does not meant naturally belongs to Cp. The
reason is that t may still be very distant from Cp. In such
case, a new cluster should be created.

Algorithm 1 describes the overview of incremental
clustering procedure.

Algorithm 1

Input: a cluster set C_set
1 while! stream.end() do
2 Tweet t= stream.next();
3 choose Cp in C_set whose centroid is
 closest to it;
4 if MaxSim (t) < MBS then
5 create a new cluster Cnew = {t};
6 C_set.add (Cnew);
7 else
8 update Cp with t;
9 if TScurrent %(αi) ==0 then
10 store C_set into PTF;

 During incremental clustering, assume there are N
active clusters, the computational cost of finding the
closest cluster for every new tweet is O (Nd), where d is
the vocabulary size. In addition, the complexity of
computing and updating TCV is O (d) and O (md)
respectively, where m is the size of focus set. Then the total
cost is O ((N+m) d). Because m and d are static, the
computational cost depends on N. Similarly, the storage
costs in disk (TCV snapshots) and memory (current TCVs)
also depend on N.
 Given the above analysis, g outdated clusters and
merging similar clusters. Since the computational
complexity of deletion is O (N) and that of merging is O
(N2), use the former method for periodical examination and
use the latter method only when memory limit is reached.

4.1.3 Deleting Outdated Clusters

IJRCS - International Journal of Research in Computer Science
Volume: 03 Issue: 02 2016 www.researchscript.com 19

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

 For most events in tweet streams, timeliness is
important because they usually do not last for a long time.
Therefore it is safe to delete the clusters representing these
sub topics when they are rarely discussed. To find out such
clusters, an intuitive way is to estimate the average arrival
time (denoted as Avgp) of the last p percent of tweets in a
cluster. However, storing p percent of tweets for every
cluster will increase memory costs, especially when
clusters grow big. Thus, employ an approximate method to
get Avg.

4.1.4 Merging Clusters
 If the number of clusters keeps increasing with few
deletions, system memory will be exhausted. To avoid this,
specify an upper limit for the number of clusters as Nmax.
When the limit is reached, a merging process starts. The
process merges clusters in a greedy way. First, sort all
cluster pairs by their centroid similarities in a descending
order. Then, starting with the most similar pair, try to
merge two clusters in it. When both clusters are single
clusters which have not been merged with other clusters,
they are merged into a new composite cluster. When one of
them belongs to a composite cluster (it has been merged
with others before), the other is also merged into that
composite cluster. When both of them have been merged, if
they belong to the same composite cluster, this pair is
skipped; otherwise, the two composite clusters are merged
together. This process continues until there are only mc
percentage of the original clusters left (mc is a merging
coefficient which provides a balance between available
memory space and the quality of remaining clusters).
Definition 3 (Aggregation Operation). Let C1 and C2 be
two clusters and their TCVs be TCV (C1) and TCV (C2).
When C1and C2 are merged together, the composite
cluster’s TCV (C1 Ụ C2) is given by
• sum_v=sum_v1+sum_v2
• wsum_v=wsum_v1+wsum_v2
• ts1=ts11+ts12
• ts2=ts21+ts22
• n=n1+n2
• ft_set consists of the first m tweets in ft_set1U
ft_set2
 , sorted by distance to the centroid.

4.2 High-Level Summarization
 The high-level summarization module provides
two types of summaries: online and historical summaries.
An online summary describes what is currently discussed
among the public. Thus, the input for generating online
summaries is retrieved directly from the current clusters
maintained in memory. On the other hand, a historical
summary helps people understand the main happenings
during a specific period, which means the need to eliminate
the influence of tweet contents from the outside of that
period. As a result, retrieval of the required information for
generating historical summaries is more complicated, and
this shall be on focusing on the following discussion.
Suppose the length of user defined time duration is H, and

the ending timestamp of the duration is tse. From PTF, it
can retrieve two snapshots whose timestamps are either
equal to or right before tse and tse _ H, respectively. Denote
the timestamps by ts1 and ts2, and their cluster sets by S
(ts1) and S(ts2). Now the original duration [tse _ H, tse] is
approximated by [ts2, ts1]
Definition 4 (Subtraction Operation). Given a cluster C1
in S (ts1) and its corresponding cluster C2 in S (ts2), when
C2 is subtracted from C1, their difference TCV (C1 - C2) is
given by
• sum _v1 = sum_v1- sum_v2
• wsum_v = wsum_v1-wsum_v
• ts1=ts11 -ts12
• ts2 =ts21- ts22
• n= n1-n2
• ft_set consists of tweets which exist in ft_set1 but
not in ft_set2.
 The above process eliminates the influence of
clusters created before ts2 on summary results. The final set
of clusters after this process is the input for historical
summarization.

TCV-Rank Summarization Algorithm
 Given an input cluster set, to denote its
corresponding TCV set as D(c). A tweet set T consists of
all the tweets in the ft_sets in D(c). The tweet
summarization problem is to extract k tweets from T, so
that they can cover as many tweet contents as possible.
Let us first describe this problem formally. Denote F =
{T1, T2,.., Tt} as a collection of non empty subsets of T,
where a subset Ti represents a sub topic and |Ti| means the
number of its related tweets. Suppose for each Ti, there is
a tweet which represents the content of Ti’s sub topic.
Then, selecting k tweets is equivalent to selecting k
subsets.

 Algorithm 2. TCV-Rank Summarization

 Input: a cluster set D(c)
 Output: a summary set S
1 S =ǿ , T={all the tweets in ft_sets of D(c)};
2 Build a similarity graph on T;
3 Compute LexRank scores LR;

 4 Tc = {tweets with the highest LR in each cluster};
5 while |S| < L do
6 foreach tweet ti in Tc _ S do
7 calculate vi according to Equation
 (2);
8 select tmax with the highest vi;
9 S.add (tmax);
10 while |S| < L do
11 foreach tweet t’i in T _ S do
12 calculate v’i according to Equation
13 select t’max with the highest v’i;
14 S.add (t’max);
15 returns S;

 To design a greedy algorithm to select representative
tweets to form summaries (Algorithm 2). First, build a

IJRCS - International Journal of Research in Computer Science
Volume: 03 Issue: 02 2016 www.researchscript.com 20

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

cosine similarity graph for all the tweets in T. The
maximum size of T is N _ m, where N is the number of
clusters in D(c) and m is the size of ft_set. It is the upper
bound because ft sets of some clusters (e.g., small clusters
or clusters newly created) may not be full. Next, apply the
LexRank method to compute centrality scores for tweets.
LexRank is an effective static summarization method and
is efficient for small sized data sets. But when data sets
become large, its efficiency drops quickly. The tweet set T
has at most Nm tweets (usually hundreds or thousands), so
LexRank is suitable for the situation.

4.3 Timeline Generation
 The core of the timeline generation module is a
topic evolution detection algorithm which produces real
time and range timelines in a similar way. The algorithm
discovers sub topic changes by monitoring quantified
variations during the course of stream processing. A large
variation at a particular moment implies a sub topic
change, which is a new node on the timeline. The main
process is described in Algorithm 3. First bin the tweets by
time (e.g., by day) as the stream proceeds. This sequenced
binning is used as input of the algorithm. Then, loop
through the bins and. append new timeline nodes whenever
large variations are detected. Key problem is how to define
the variation and detect when it becomes large. It describes
three different kinds of variations and their detection
methods.

Algorithm 3. Topic Evolution Detection

Input: a tweet stream binned by time
 units
Output: a timeline node set TN
1: TN=ǿ;
2: while !stream.end () do
3: Bin Ci= stream.next ();
4: if hasLargeVariation () then
5: TN.add (i);
6: return TN;

 In this algorithm, the key problem is how to
define the variation and detect when it becomes large. In
what follows, will describe three different kinds of
variations and their detection methods respectively.

4.3.1 Summary-Based Variation
 As tweets arrive from the stream, online
summaries are produced continuously by utilizing online
cluster statistics in TCVs. This allows for generation of a
real time timeline. Generally, when an obvious variation
occurs in the main contents discussed in tweets (in the form
of summary), can expect a change of sub topic (i.e., a time
node on the timeline).

4.3.2 Volume-Based Variation

Though the summary-based variation can reflect
sub-topic changes, some of them may not be influential

enough. Since many tweets are related to users’ daily life
or trivial events, a sub topic change detected from textual
contents may not be significant enough. Consider the use
of rapid increases (or “spikes”) in the volume of tweets
overtime, which is a common technique in existing online
event detection systems. A spike suggests that something
important just happened because many people found the
need to comment on it. Develop a spike finding method. As
the input, the binning process in Algorithm 3 needs to
count the tweet arrival volume in each time unit.

5 EXPERIMENTS
 To evaluate the performance of Sumblr, present the
experiments for summarization and timeline generation
respectively.

5.1 Experiments for Summarization
5.1.1 Setup
 Data Sets: Construct five data sets to evaluate
summarization. One is obtained by conducting keyword
filtering on a large Twitter data set used. The other four
include tweets acquired during one month in 2012 via
Twitter’s keyword tracking API.4 ,do not have access to
the respective users’ social networks for these four, set
their weights of tweets wi to the default value of 1.
1. Given time duration, first retrieve the corresponding
tweet subset, and use the following three well recognized
summarization algorithms to get three candidate
summaries. ClusterSum clusters the tweets and picks the
most weighted tweet from each cluster to form summary.
LexRank [11] first builds a sentence similarity graph, and
then selects important sentences based on the concept of
Eigen vector centrality. DSDR models the relationship
among sentences using linear reconstruction, and finds an
optimal set of sentences to approximate the original
documents, by minimizing the reconstruction error.
2. Next, for each subset, the final reference summary is
extracted from three candidate summaries by using a
voting scheme. The intuition is that if a specific tweet and
its similar tweets appear many times in the candidate
summaries, they can represent important content and
should be chosen into the final summary. Specifically, for
each tweet in each candidate summary, compute its
similarities to the tweets from the other two candidate
summaries. Then, the tweet votes to its most similar one
and these two tweets form a “pair”. After processing all the
tweets in candidate summaries, sort them in descending
order of their total votes. Delete the tweets whose pair
members already exist at higher ranks. In each window
contains a certain number (window size) of tweets which
are summarized as a document. After that, the window
moves forward by a step size, so that the oldest tweets are
discarded and the new ones are added into the window. In
this way, implement the sliding window version of the
above three algorithms, namely ClusterSum, LexRank, and
DSDR. The windows are dimensioned by number of tweets
instead of time duration, because the number of tweets may

IJRCS - International Journal of Research in Computer Science
Volume: 03 Issue: 02 2016 www.researchscript.com 21

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

vary dramatically across fixed length durations, leading to
very poor performance of the baseline algorithms.

5.1.2 Flexibility
 Feature of Sumblr is the flexibility to summarize
tweets over arbitrary time durations. This feature is
provided by incorporating the PTF. The effectiveness of
PTF depends on a and l. Fix a at 2 and show the results
varying l. For consistency, extract a subset of one month
period from each data set as the input stream. The interval
between two successive snapshots (timestamp unit) is one
hour. For a timestamp ts, evaluate the results for different
durations with length len varying from 1 to 10 days. Report
the average F-score score (ts) by interval of 48 hours.

 6 CONCLUSION
 A prototype called Sumblr which supported
continuous tweet stream summarization. Sumblr employs a
tweet stream clustering algorithm to compress tweets into
TCVs and maintains them in an online fashion. Then, it

uses a TCV-Rank summarization algorithm for generating
online summaries and historical summaries with arbitrary
time durations. The topic evolution can be detected
automatically, allowing Sumblr to produce dynamic
timelines for tweet streams.

REFERENCES

[1]. Zhenhua Wang,Lidan Shou,Ke Chen,Gang Chen, and Sharad

Mehrotra, “On Summarization and Timeline Generation for
Evolutionary Tweet Streams ” by IEEE ,2015

[2]. Yang Gao,Yue Xu,and Yuefeng Li, “Pattern-Based Topics for
Document Modeling in Information Filtering” by IEEE,2015

[3]. Maryam Habibi and Andrei Popescu-Belis,“Keyword
Extraction and Clustering for Document Recommendation
in Conversations” by IEEE,2015.

[4]. AltugAkay,AndreiDragomir,Erlandson,“Network-Based
Modeling and Intelligent Data Mining of Social Media for
Improving Care” by IEEE,2015.

IJRCS - International Journal of Research in Computer Science
Volume: 03 Issue: 02 2016 www.researchscript.com 22

	Introduction (Heading 1)

