
 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

METHOD LEVEL BUG PREDICTION USING
INFORMATION GAIN

1Vaijayanthi Murugan | 2Karthick M
1,2(AP/CSE, SNS College of Technology, Coimbatore, India, vaijayanthimurugan25@gmail.com))

Abstract— Software defects commonly known as bugs, present a serious challenge for the software developers to predict the bugs and
to enhance the system reliability and dependability. The software defects are usually an incorrect output value, exceptions occurred in
the source code, failure due to logical errors or due to any syntax errors. As the size of the programs grows and it may contain large
number of methods, so, occurrence of bugs become more common and difficult to fix. It will take time to predict the bugs at the individual
methods. Many techniques have been developed to mainly focus on method-level bug prediction. Several features are commonly used for
method level bug prediction. To identify the best set of features it is proposed to use Filter Based Feature Selection (FBFS) using
Information Gain. The Information Gain value is calculated for estimating the individual features. Based on the Information Gain values,
the relevant features will be extracted for evaluation. In this work, the method-level bug prediction will be carried out using Support
Vector Machine (SVM) classifier. Finally, the performance of the bug prediction models will be measured by using Precision, Recall and
F-measure values. The volume of predicted bugs can be assessed by using the values of evaluation measures.

Keywords— bug prediction, precision, recall, F-measure, method-level, information gain, accuracy, SVM classifier.
__

1. INTRODUCTION
Bug prediction is considered to be an important field of

research in software engineering. Usually software defects,
such as, indefinite loop or an incorrect output values are
commonly known as bugs. Typically bug prediction plays
a major role to predict the bugs in the early stages of
software development process. Recently many bug
prediction techniques are based on method-level. These
techniques include several Machine Learning Classifiers
like Naïve Bayesian classifier, Support Vector Machine
classifier.

Such techniques rely on some software quality metrics
(say., Lines of Code, complexity). The software defects or
bugs cannot be directly measured, so certain software
quality metrics are collected from standard datasets. The
dataset includes source code metrics like Chidamber and
Kemerer (CK) metrics, Object Oriented (OO) metrics and
Change metrics to predict bugs at the method-level.

To evaluate the performance of the bug prediction
model, Machine Learning classifier called Naïve Bayesian
classifier is used. The first step in classification process is
that to construct a model using training set. Then the
classifier will use the model to predict the bugs in future
with unknown class values as testing set. The performance
of the bug prediction model is estimated using some well-
known performance evaluation criteria like Precision,
Recall and Accuracy values.

The accuracy is the degree to which the algorithm
correctly identifies future bugs. Precision is defined as the
ratio of the number of modules correctly predicted as
defective, to the total number of modules predicted in the
set [1]. Recall is defined as the ratio of the number of
modules predicted correctly as defective to the total
number of defective modules in the set.

2. LITERATURE REVIEW
A. Machine Learning

There are two things that need to be achieved in
machine learning process. First, the training needs to be

done with known class labels. Second, the trained model
needs an efficient algorithm to validate the unknown class
labels by means of testing. Supervised learning is common
in classification problems where the goal is to have the
learner learn a predefined classification [1]. Table 1 shows
the general structure of data used in supervised learning.
Each instance of data is defined by a set of features and a
class.

B. Ten-Fold Cross Validation
Cross-validation involves partitioning a sample of

datasets into complementary subsets, performing the
analysis on one subset (called the training set), and
validating on the other subset (called the validation set or
testing set) [2].

The validation process simplifies as:
TABLE I. GENERAL STRUCTURE OF DATA USED IN

SUPERVISED LEARNING WITH KNOWN CLASSES

1. Break data into 10 sets of size n/10.
2. Train on 9 datasets and test on 1 dataset.
3. Repeat 10 times and take a mean accuracy.

The initial stage to break all the given dataset into

pieces. Then it takes the training dataset and to test for the
remaining dataset and repeat the process till all the dataset
completes.

3. CLASSIFICATION USING NAÏVE BAYESIAN
APPROACH

A. Corpus Collection

To experiment with the machine learning classifier, the
data are collected from the standard bug prediction dataset
such as Lucene dataset. It consist of the source code

Data in Standard Format
Case Feature

1
Feature

2
…. Feature

n
Class

1 XX X …. XXX YES
2 XX X …. XXX NO
3 XX X …. XXX YES
N XX X …. XXX NO

IJRCS - International Journal of Research in Computer Science
Volume: 04 Issue: 01 2017 www.researchscript.com 9

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

metrics, change metrics and bug metrics. The main focus of
this paper is to construct a model to predict the method-
level rather than at the file-level requires that all metrics
are available at method-level.

B. Dataset

The standard bug prediction dataset includes source
code metrics like Chidamber and Kemerer (CK) metrics
and Object Oriented (OO) metrics. The change metrics
includes, the file(s) being affected by the changes
commonly known as Revision. The source code metrics
include #methods, #fanin, #fanout, and #attributes. Bug
prediction is an important challenge in Software
Engineering research. The goal is to build reliable
predictors that can indicate in advance about those
components of a software system that are more likely to
fail. Due to its relevance to software quality, various bug
prediction techniques have already been proposed.

Essentially, such techniques rely on different
predictors, including source code metrics, change metrics,
etc. The main focus is to define the relationships between
the defined metrics and the occurrences of bugs [3]. The
metrics are already defined in the public dataset to evaluate
the bug prediction techniques. This dataset provides the
change log approaches and the single-version approaches
and hence provide the necessary information for the defect
prediction. The original dataset includes the Lucene
dataset. The metrics that are available in the dataset are [4]
Chidamber and Kemerer (CK) metrics and Object Oriented
(OO) metrics. There are 6 CK metrics and 11 OO metrics
listed in Table 2 which shows the metrics included in the
original dataset.
TABLE II. CHIDAMBER AND KEMERER METRICS AND OBJECT

ORIENTED METRICS
TYPES METRICS DESCRIPTION

CK WMC Weighted Methods per Class
CK DIT Depth of Inheritance Tree
CK RFC Response For Class
CK NOC Number of Children
CK CBO Coupling Between objects
CK LCOM Lack of Cohesion on Methods
OO FANIN Number of Classes that Reference the Class
OO FANOUT Number of Classes Referenced by the Class
OO NOA Number of Attributes
OO NOPA Number of Public Attributes
OO NOPRA Number of Private Attributes
OO NOAI Number of Attributes Inherited
OO LOC Number of Lines of Code
OO NOM Number of Methods
OO NOPM Number of Public Methods
OO NOPRM Number of Private Methods
OO NOMI Number of Methods Inherited

C. Code metrics

There are two traditional suits of code metrics exist:

 CK metrics suite.
 Set of metrics directly calculated at the

method-level.

E. Naïve Bayes Classifier

A Naïve Bayes classifier is a probabilistic classifier
based on applying Bayes’ theorem with strong
independence assumptions. When represented as a
Bayesian network, a Naïve Bayes classifier has the
structure depicted in [4] Figure 1. It shows the
independence assumption among all features in a data
instance.

Fig. 1. Block Diagram of Naïve Bayesian Approach

F. Algorithm
Let 𝐗𝐗 = {X1… X𝑛𝑛} be a finite set of observed random

variables, called features, where each feature takes values
from its domain Di. The set of all feature sets is
denoted by Ω = D1 × … × D𝑛𝑛. Let C, such that C ∈ {0, 𝑢𝑢 −
1}, be an unobserved random variable denoting the class of
a set of features.

A hypothesis ℎ ∶ Ω → {0… 𝑢𝑢 − 1}, that assigns a class
to any given set of variables is defined as a classifier. Each
class c is assigned a discriminant function 𝑓𝑓(𝑐𝑐 (𝒙𝒙)), 𝑐𝑐 = 0…
𝑢𝑢 – 1 [5]. The classifier selects the class with the maximum
discriminant function on a given set of variables.

Thus the bayes theorem can be written as:

The equation 1 shows that, it predicts X belongs to Ci

iff the probability P(Ci/X) is the highest among all the
P(Ck/X) for all the k classes.

G. Performance Evaluation

The classifier is performed by evaluating which set of
features yields the best overall classification accuracy and

Bug
prediction

dataset

Features
(Source code
and change

metrics)

Cross
Validation

Naïve
Bayesian
Classifier

Evaluate using
Performance

measures

 Prediction
results

Classified
as bugs

IJRCS - International Journal of Research in Computer Science
Volume: 04 Issue: 01 2017 www.researchscript.com 10

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

recall, and also by examining the relative contributions of
individual features. Table 3. explains the confusion matrix.

Precision

Precision is defined as the ratio of the number of
modules correctly predicted as defective, to the total
number of modules predicted in the set. Precision is also
termed as True Positive which classified as truly predicted
as bugs.

Recall

This metric indicates the coverage of the accuracy.
Recall is defined as the ratio of the number of modules
predicted correctly as defective to the total number of
defective modules in the set. Recall is also termed as True
Negative which classified as not bugs.

TABLE III. CONFUSION MATRIX TABLE

Actual class
(observation)

Predicted class
(expectation)

TP
(True Positive)
Correct result

FP
(False Positive)

Unexpected
result

FN
(False Negative)
Missing result

TN
(True Negative)
Correct absence

of result

4. CLASSIFICATION USING SUPPORT VECTOR
MACHINE CLASSIFIER

A. Feature Selection

In feature selection process, the source code metrics
and the change metrics are selected from the whole bug
prediction dataset. The features will be taken for classifier
training once it is evaluated using K-Fold cross validation
process [6]. The cross validation process will separate the
training set and the testing set.

B. Information Gain Calculation

Once the metrics have been collected from the dataset,
the small set of features alone will be selected for the
evaluation of bug prediction process [7]. The subset of
features will be selected from the whole dataset by
calculating the information gain for all the features in the
dataset. The Support Vector Machine classifier will take
the testing set and will calculate the accuracy and then will
take the testing samples to evaluate the accuracy for
unknown labels

The features in the dataset include six Chidamber and
Kemerer (CK) metrics and eleven Object Oriented (OO)
metrics. It also contains nine change metrics, lines added to
the source code, maximum lines added to the source code,
average lines added, lines removed from the source code,
maximum lines removed, average lines removed,
maximum and average code churn added or deleted. The
CK metrics include weighted methods per class, depth of
inheritance tree, coupling between object classes, response
for a class, lack of cohesion in methods. [13]The OO
metrics include fanin, fanout, number of attributes, number
of methods, number of methods inherited.

C. Performance evaluation of the features

Since the choice of features can affect the performance
of classifiers, each feature’s discriminative power for
performing change classification is compared [8]. This is
performed by evaluating which set of features yields the
best overall classification accuracy and recall, and also by
examining the relative contributions of individual features.

The accuracy of the classifier will be estimated by
combining the terms Precision and Recall using the F-
measure values.

D. Evaluating the Approaches

The performance of bug prediction approaches is
evaluated with several strategies, each according to a
different usage scenario of bug prediction. We evaluate
each technique in the context of classification
(defective/non-defective) [9]. Prior to model building and
classification we labeled each method in our dataset as
either as bug-prone or not bug-prone as follows:

 (Eq. 3.1)
The equation 5 defines the classification of bugs in the

dataset which classified as either bug-prone or not bug-
prone [10]. If the class classified as bugs, it is defined as
numeric values as 1, 2, 3, etc. otherwise 0.

5. EXPERIMENTAL RESULTS

The classifier is trained with the standard Lucene bug
prediction dataset. The dataset contains the set of attributes,
classes, set of data and instances. Based on the class values
the testing set will predict the values similar to that of the
training values. The original dataset will contain the
information regarding the performance evaluation for the
bug predictors. Each and every data will be considered as
features in the dataset [11]. Once the data is selected as
features, the cross validation will be performed for
separating the features as training and testing samples.
Then it will feed to the classifier for performance
evaluation for calculating the accuracy.

IJRCS - International Journal of Research in Computer Science
Volume: 04 Issue: 01 2017 www.researchscript.com 11

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

The data are collected from the standard bug prediction
dataset. The data will be in the form of excel format (say
.xlsx). The original dataset will contain the information
regarding the performance evaluation for the bug
predictors. Each and every data will be considered as
features in the dataset. Once the data is selected as features,
the cross validation will be performed for separating the
features as training and testing samples [12]. Then it will
feed to the classifier for performance evaluation for
calculating the accuracy. By analyzing the results for the
Naïve Bayesian classifier, the accuracy is evaluated using
cross validation method as 10 fold cross validation. By
using this classifier, the accuracy obtained is 96.89%. But
the accuracy for the support vector machine classifier is
91.02%. The proposed system proposes the feature
selection method as Information Gain calculation. To
increase the accuracy, the feature selection has to be
carried out. The implementation is currently in progress.

Fig. 2. Metrics in the Lucene Dataset

Fig. 3. Accuracy by Naïve Bayesian Classifier

Fig. 4. Confusion Matrix

6. CONCLUSION AND FUTURE WORK

The accuracy of the classifier is evaluated using the
performance evaluation measures. For the metrics dataset
the Naïve Bayesian classifier performed well and the
accuracy has been evaluated with the cross validation
process. Finally the accuracy of the classifier is evaluated
using the measures like Precision, Recall and F-measure
values. The bug prediction process has been carried out
with the standard bug prediction dataset.

Future work will include additional metrics related to
standard bug prediction dataset and extend the analysis
with the advanced feature selection process.

REFERENCES
[1] Giger, E. D’Ambros, M. Pinzger, M. Gall, H.C. (2012) ‘Method-

level bug prediction’, ESEM ’12 Proceedings of the ACM-IEEE
international symposium on Empirical Software Engineering and
Measurement, pp. 171-180.

[2] Bandana Garg. (2013) ‘Design and Development of Naïve Bayes
Classifier’, Fargo, North Dakota.

[3] Langley, P. Iba, W. and Thompson, K. (1992) ‘An analysis of
Bayesian Classifiers’, Proceedings of the Tenth National Conference
on Artificial Intelligence, San Jose, CA, pp. 223-228.

[4] Friedman, N. Geiger, D. and Goldszmidt, M. (1997) ‘Bayesian
Network Classifiers’, Machine Learning, vol. 29, pp. 131-163.

[5] Kotsiantis, S.B. (2007) ‘Supervised Machine Learning: A Review of
Classification’, Informatica pp. 249-268.

[6] Moser, R. Pedrycz, W. and Succi, G. (2008) ‘A comparative
analysis of the efficiency of change metrics and static code attributes
for defect prediction’, Proceedings of ICSE , pp. 181-190.

[7] Couto, C. Silva, C. Valente, M.T. Bigonha, R. and Anquetil, N.
(2012) ‘Uncovering Causal Relationships between Software Metrics
and Bugs’, Proceedings of CSMR, pp. 223-232.

[8] Shanthini, A. Chandrasekaran, RM. (2012) ‘Applying Machine
Learning for Fault Prediction Using Software Metrics’, Proceedings
of IJARCSSE, pp. 274-278.

[9] Kim, S. Zhang, H. Wu, R. and Gong, L. (2011) ‘Dealing with noise
in defect prediction’, Proceedings of ICSE, vol. 2, no. 6, pp. 481-
490.

IJRCS - International Journal of Research in Computer Science
Volume: 04 Issue: 01 2017 www.researchscript.com 12

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

[10] Freund, Y. and Schapire, R. E. (1999) ‘A Short Introduction to
Boosting’, Journal of Japanese Society for Artificial Intelligence,
vol. 14, no. 5, pp. 771-780.

 [11] Chidamber, S. R. and Kemerer, C. F. (1994) ‘A metrics suite for
object oriented design’, IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476-493.

[12] Kim, S. Whitehead, E. J. Zhang, J. Y. (2008), ‘Classifying Software
Changes: Clean or Buggy?’, vol. 34 no. 2, pp. 181-196.

[13] Subramanyam, R. and Krishnan, M.S. (2003), ‘Empirical analysis of
CK metrics for object-oriented design complexity: Implications for
software defects’, IEEE Transaction on Software Engineering, vol.
29 no. 4, pp. 297-310.

IJRCS - International Journal of Research in Computer Science
Volume: 04 Issue: 01 2017 www.researchscript.com 13

	Introduction
	LITERATURE REVIEW

