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Abstract— Software defects commonly known as bugs, present a serious challenge for the software developers to predict the bugs and 
to enhance the system reliability and dependability. The software defects are usually an incorrect output value, exceptions occurred in 
the source code, failure due to logical errors or due to any syntax errors. As the size of the programs grows and it may contain large 
number of methods, so, occurrence of bugs become more common and difficult to fix. It will take time to predict the bugs at the individual 
methods. Many techniques have been developed to mainly focus on method-level bug prediction. Several features are commonly used for 
method level bug prediction. To identify the best set of features it is proposed to use Filter Based Feature Selection (FBFS) using 
Information Gain. The Information Gain value is calculated for estimating the individual features. Based on the Information Gain values, 
the relevant features will be extracted for evaluation. In this work, the method-level bug prediction will be carried out using Support 
Vector Machine (SVM) classifier. Finally, the performance of the bug prediction models will be measured by using Precision, Recall and 
F-measure values. The volume of predicted bugs can be assessed by using the values of evaluation measures. 
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1.  INTRODUCTION  
Bug prediction is considered to be an important field of 

research in software engineering. Usually software defects, 
such as, indefinite loop or an incorrect output values are 
commonly known as bugs. Typically bug prediction plays 
a major role to predict the bugs in the early stages of 
software development process. Recently many bug 
prediction techniques are based on method-level. These 
techniques include several Machine Learning Classifiers 
like Naïve Bayesian classifier, Support Vector Machine 
classifier.  

Such techniques rely on some software quality metrics 
(say., Lines of Code, complexity). The software defects or 
bugs cannot be directly measured, so certain software 
quality metrics are collected from standard datasets. The 
dataset includes source code metrics like Chidamber and 
Kemerer (CK) metrics, Object Oriented (OO) metrics and 
Change metrics to predict bugs at the method-level. 

To evaluate the performance of the bug prediction 
model, Machine Learning classifier called Naïve Bayesian 
classifier is used. The first step in classification process is 
that to construct a model using training set. Then the 
classifier will use the model to predict the bugs in future 
with unknown class values as testing set. The performance 
of the bug prediction model is estimated using some well-
known performance evaluation criteria like Precision, 
Recall and Accuracy values. 

The accuracy is the degree to which the algorithm 
correctly identifies future bugs. Precision is defined as the 
ratio of the number of modules correctly predicted as 
defective, to the total number of modules predicted in the 
set [1]. Recall is defined as the ratio of the number of 
modules predicted correctly as defective to the total 
number of defective modules in the set. 

2. LITERATURE REVIEW 
A. Machine Learning 

There are two things that need to be achieved in 
machine learning process. First, the training needs to be 

done with known class labels. Second, the trained model 
needs an efficient algorithm to validate the unknown class 
labels by means of testing. Supervised learning is common 
in classification problems where the goal is to have the 
learner learn a predefined classification [1]. Table 1 shows 
the general structure of data used in supervised learning. 
Each instance of data is defined by a set of features and a 
class. 

B. Ten-Fold Cross Validation 
Cross-validation involves partitioning a sample of 

datasets into complementary subsets, performing the 
analysis on one subset (called the training set), and 
validating on the other subset (called the validation set or 
testing set) [2]. 

The validation process simplifies as: 
TABLE I.    GENERAL STRUCTURE OF DATA USED IN 

SUPERVISED LEARNING WITH KNOWN CLASSES 

1. Break data into 10 sets of size n/10. 
2. Train on 9 datasets and test on 1 dataset. 
3. Repeat 10 times and take a mean accuracy. 

The initial stage to break all the given dataset into 

pieces. Then it takes the training dataset and to test for the 
remaining dataset and repeat the process till all the dataset 
completes. 

3. CLASSIFICATION USING NAÏVE BAYESIAN 
APPROACH 

A. Corpus Collection 

To experiment with the machine learning classifier, the 
data are collected from the standard bug prediction dataset 
such as Lucene dataset. It consist of the source code 

Data in Standard Format 
Case Feature 

1 
Feature 

2 
…. Feature 

n 
Class 

1 XX X …. XXX YES 
2 XX X …. XXX NO 
3 XX X …. XXX YES 
N XX X …. XXX NO 
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metrics, change metrics and bug metrics. The main focus of 
this paper is to construct a model to predict the method-
level rather than at the file-level requires that all metrics 
are available at method-level. 

B. Dataset 

The standard bug prediction dataset includes source 
code metrics like Chidamber and Kemerer (CK) metrics 
and Object Oriented (OO) metrics. The change metrics 
includes, the file(s) being affected by the changes 
commonly known as Revision. The source code metrics 
include #methods, #fanin, #fanout, and #attributes. Bug 
prediction is an important challenge in Software 
Engineering research. The goal is to build reliable 
predictors that can indicate in advance about those 
components of a software system that are more likely to 
fail. Due to its relevance to software quality, various bug 
prediction techniques have already been proposed.  

Essentially, such techniques rely on different 
predictors, including source code metrics, change metrics, 
etc. The main focus is to define the relationships between 
the defined metrics and the occurrences of bugs [3]. The 
metrics are already defined in the public dataset to evaluate 
the bug prediction techniques. This dataset provides the 
change log approaches and the single-version approaches 
and hence provide the necessary information for the defect 
prediction. The original dataset includes the Lucene 
dataset. The metrics that are available in the dataset are [4] 
Chidamber and Kemerer (CK) metrics and Object Oriented 
(OO) metrics. There are 6 CK metrics and 11 OO metrics 
listed in Table 2 which shows the metrics included in the 
original dataset. 
TABLE II. CHIDAMBER AND KEMERER METRICS AND OBJECT          

ORIENTED METRICS 
TYPES METRICS DESCRIPTION 

CK WMC Weighted Methods per Class 
CK DIT Depth of Inheritance Tree 
CK RFC Response For Class 
CK NOC Number of Children 
CK CBO Coupling Between objects 
CK LCOM Lack of Cohesion on Methods 
OO FANIN Number of Classes that Reference the Class 
OO FANOUT Number of Classes Referenced by the Class 
OO NOA Number of Attributes 
OO NOPA Number of Public Attributes 
OO NOPRA Number of Private Attributes 
OO NOAI Number of Attributes Inherited 
OO LOC Number of Lines of Code 
OO NOM Number of Methods 
OO NOPM Number of Public Methods 
OO NOPRM Number of Private Methods 
OO NOMI Number of Methods Inherited 

 
C. Code metrics 

There are two traditional suits of code metrics exist: 

 CK metrics suite. 
 Set of metrics directly calculated at the 

method-level. 
 

E. Naïve Bayes Classifier 

A Naïve Bayes classifier is a probabilistic classifier 
based on applying Bayes’ theorem with strong 
independence assumptions. When represented as a 
Bayesian network, a Naïve Bayes classifier has the 
structure depicted in [4] Figure 1. It shows the 
independence assumption among all features in a data 
instance. 

 
 
 
 
 
 
 

 
 

 

 

 

 

 

Fig. 1.  Block Diagram of Naïve Bayesian Approach 

F. Algorithm 
Let 𝐗𝐗 = {X1… X𝑛𝑛} be a finite set of observed random 

variables, called features, where each feature takes values 
from its domain Di. The set of all feature sets is       
denoted by Ω = D1 × … × D𝑛𝑛. Let C, such that C ∈ {0, 𝑢𝑢 − 
1}, be an unobserved random variable denoting the class of 
a set of features. 

A hypothesis ℎ ∶ Ω → {0… 𝑢𝑢 − 1}, that assigns a class 
to any given set of variables is defined as a classifier. Each 
class c is assigned a discriminant function 𝑓𝑓(𝑐𝑐 (𝒙𝒙)), 𝑐𝑐 = 0… 
𝑢𝑢 – 1 [5]. The classifier selects the class with the maximum 
discriminant function on a given set of variables. 

Thus the bayes theorem can be written as: 
  

                       
The equation 1 shows that, it predicts X belongs to Ci 

iff the probability P(Ci/X) is the highest among all the 
P(Ck/X) for all the k classes. 

 

G. Performance Evaluation 

The classifier is performed by evaluating which set of 
features yields the best overall classification accuracy and 
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recall, and also by examining the relative contributions of 
individual features. Table 3. explains the confusion matrix. 

Precision 

Precision is defined as the ratio of the number of 
modules correctly predicted as defective, to the total 
number of modules predicted in the set. Precision is also 
termed as True Positive which classified as truly predicted 
as bugs. 

         
Recall 

This metric indicates the coverage of the accuracy. 
Recall is defined as the ratio of the number of modules 
predicted correctly as defective to the total number of 
defective modules in the set. Recall is also termed as True 
Negative which classified as not bugs. 

               
 

TABLE III. CONFUSION MATRIX TABLE 

 
  

Actual class 
(observation) 

 
 
 

Predicted class 
(expectation) 

TP 
(True Positive) 
Correct result 

FP 
(False Positive) 

Unexpected 
result 

FN 
(False Negative) 
Missing result 

TN 
(True Negative) 
Correct absence 

of result 
 

4. CLASSIFICATION USING SUPPORT VECTOR 
MACHINE CLASSIFIER 

A. Feature Selection 

In feature selection process, the source code metrics 
and the change metrics are selected from the whole bug 
prediction dataset. The features will be taken for classifier 
training once it is evaluated using K-Fold cross validation 
process [6]. The cross validation process will separate the 
training set and the testing set. 

 

B. Information Gain Calculation 

Once the metrics have been collected from the dataset, 
the small set of features alone will be selected for the 
evaluation of bug prediction process [7]. The subset of 
features will be selected from the whole dataset by 
calculating the information gain for all the features in the 
dataset. The Support Vector Machine classifier will take 
the testing set and will calculate the accuracy and then will 
take the testing samples to evaluate the accuracy for 
unknown labels 

The features in the dataset include six Chidamber and 
Kemerer (CK) metrics and eleven Object Oriented (OO) 
metrics. It also contains nine change metrics, lines added to 
the source code, maximum lines added to the source code, 
average lines added, lines removed from the source code, 
maximum lines removed, average lines removed, 
maximum and average code churn added or deleted. The 
CK metrics include weighted methods per class, depth of 
inheritance tree, coupling between object classes, response 
for a class, lack of cohesion in methods. [13]The OO 
metrics include fanin, fanout, number of attributes, number 
of methods, number of methods inherited. 

C.  Performance evaluation of the features 

Since the choice of features can affect the performance 
of classifiers, each feature’s discriminative power for 
performing change classification is compared [8]. This is 
performed by evaluating which set of features yields the 
best overall classification accuracy and recall, and also by 
examining the relative contributions of individual features. 

The accuracy of the classifier will be estimated by 
combining the terms Precision and Recall using the F-
measure values. 

 

             
  
D. Evaluating the Approaches 

The performance of bug prediction approaches is 
evaluated with several strategies, each according to a 
different usage scenario of bug prediction. We evaluate 
each technique in the context of classification 
(defective/non-defective) [9]. Prior to model building and 
classification we labeled each method in our dataset as 
either as bug-prone or not bug-prone as follows: 

 

                         (Eq. 3.1) 
The equation 5 defines the classification of bugs in the 

dataset which classified as either bug-prone or not bug-
prone [10]. If the class classified as bugs, it is defined as 
numeric values as 1, 2, 3, etc. otherwise 0. 

5. EXPERIMENTAL RESULTS 

The classifier is trained with the standard Lucene bug 
prediction dataset. The dataset contains the set of attributes, 
classes, set of data and instances. Based on the class values 
the testing set will predict the values similar to that of the 
training values. The original dataset will contain the 
information regarding the performance evaluation for the 
bug predictors. Each and every data will be considered as 
features in the dataset [11]. Once the data is selected as 
features, the cross validation will be performed for 
separating the features as training and testing samples. 
Then it will feed to the classifier for performance 
evaluation for calculating the accuracy. 
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The data are collected from the standard bug prediction 
dataset. The data will be in the form of excel format (say 
.xlsx). The original dataset will contain the information 
regarding the performance evaluation for the bug 
predictors. Each and every data will be considered as 
features in the dataset. Once the data is selected as features, 
the cross validation will be performed for separating the 
features as training and testing samples [12]. Then it will 
feed to the classifier for performance evaluation for 
calculating the accuracy. By analyzing the results for the 
Naïve Bayesian classifier, the accuracy is evaluated using 
cross validation method as 10 fold cross validation. By 
using this classifier, the accuracy obtained is 96.89%. But 
the accuracy for the support vector machine classifier is 
91.02%.  The proposed system proposes the feature 
selection method as Information Gain calculation. To 
increase the accuracy, the feature selection has to be 
carried out. The implementation is currently in progress. 

 

Fig. 2.  Metrics in the Lucene Dataset 

 

Fig. 3.  Accuracy by Naïve Bayesian Classifier 

     

Fig. 4.  Confusion Matrix 
               

6. CONCLUSION AND FUTURE WORK 

The accuracy of the classifier is evaluated using the 
performance evaluation measures. For the metrics dataset 
the Naïve Bayesian classifier performed well and the 
accuracy has been evaluated with the cross validation 
process. Finally the accuracy of the classifier is evaluated 
using the measures like Precision, Recall and F-measure 
values. The bug prediction process has been carried out 
with the standard bug prediction dataset. 

Future work will include additional metrics related to 
standard bug prediction dataset and extend the analysis 
with the advanced feature selection process. 
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