
 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

A METAHEURISTICS ALGORITHM
APPROACH TO TRACK THE REUSABILITY

LEVEL OF A COMPONENT IN DESIGN PHASE
R. Kamalraj1 | Dr. A. Rajivkannan2 | K. Kavya3 | K.R. Nishanth4

1(Computer science and Engineering, SNSCT, Coimbatore, India, mailtokamalraj@yahoo.com)
2(Computer science and Engineering, KSRCE, Coimbatore, India, rajivkannan@ksrce.ac.in)
3(Computer science and Engineering, SNSCT, Coimbatore, India, kavya.kmk97@gmail.com)

4(Computer science and Engineering, SNSCT, Coimbatore, India, itsmenishanthkr@gmail.com)

Abstract— Reusability is one of the main characteristic required in the component side to reduce the development cost in further
project works. So checking the 'Reusability' is suggested in the design phase itself of a software system to identify that whether the system
has any 'Reusable' elements for future use. To identify that characteristic many methods and approaches are available. But compared to
existing methods the 'FireFly' algorithm can give high optimized result to specify the 'Reusability' Level of the component. To derive the
solution for that the different design metrics along with their threshold values and relationships among those metrics are analyzed
perfectly. This approach also can be used as a 'Classification Technique' on software components.

Keywords—FireFly Algorithm, Reusability, Meta-Heuristic algorithm, Package Scalability, Stability
__

1. INTRODUCTION
Developing a Software System with minimal effort is a

challenging activity in Software engineering field. To
reduce development cost and effort to get better benefit the
development team use various approaches like 'Reusing
Components', 'Take Well-Trained People' and 'Advanced
Tools' [2]. Among them 'Reusing Existing Components'
play an important role to minimize the cost and effort and
also it increase productivity of development team. The 3
phases ‘Domain analyses’, 'Package Analysis' and 'System
Analysis' will be followed by Project Management Team to
find similar elements from the already completed project
source [4]. To reuse an element it should satisfy some
criteria to give good functionality without producing any
side effects. While designing a system, the development
team can track that whether an element or a component to
act as 'Reusable Component' in future [3]. In a dynamic
fashion the different design metrics of all components
should be analyzed to find the fitness of a component in the
design phase itself.

A. Requirements for Components Reuse
From the Software Development Life Cycle, after

recording the user needs in Software Requirement
Specification (SRS) document the design phase begins to
give to solve the problem by applying different techniques.
In design phase design patterns and 'System Architecture'
are created for developing the system. The Designing of a
software system states that providing solutions to the give
problem as in 'Pictorial Documents'. During that for giving
simplicity in the business goal the same or similar element
will be grouped together to be component. While making a
component it has to be verified to check the quality of
'Reusability'. The reusable components can reduce the stress
on software development team, gives efficient 'Resource
Management' and it reduces conflict in 'Time Management'.
Reusing the existing elements can give good quality of

systems to satisfy the customer needs. The metrics are 'Fan-
in' and 'Fan-out', 'Cohesion', 'Coupling', 'Component
Stability', 'Complexity' and 'Package Size'. Those are
discussed below [5].

B. Relationship among Fan-in, Fan-out, Coupling,
Stability and Complexity
Design phase has the responsibility of creating 'High-

Level' patterns and 'Low-Level' patterns. The 'High-Level'
pattern of a system describes the message passing between
the different component or packages in the design. Each
component of a system may be depending upon other
component for any of the reasons.

 The different reasons are

a) To get Control to execute its tasks

b) To get Data to give result and

c) To get Control to pass control to other elements in the
system.

One component may have full control to call other
components in the entire system. So the number of control
comes out of a component is known as 'Fan-out'. The
number of incoming control to a component is called 'Fan-
in'. So total number of connections is (TOC) can be
represented like in below mathematical notation.

TOC= (no. of Fan-in) + (no. of Fan-out) - (1)

If a component has only 'Fan-out' characteristic then it
may be 'Independent' one and it has only 'Export Coupling'
[1]. So it can act as 'Server Component' of other
components in the system. But if a component has one and
only 'Fan-in' then it may be depending on other
component(s) and it reaches the metric 'Import Coupling'
type. So this type of component can exist without help of
suitable parent components. This is called as 'Pure Client

IJRCS - International Journal of Research in Computer Science
Volume: 04 Issue: 02 2017 www.researchscript.com 1

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

Component'. By comparing the dependency of a component
the 'Stability' metric can be measured. The server
component can run without help of other components. So it
has high 'Stability' value or 1. But the Client component
may not have high stability value due to its dependency on
other components. When a Component has very high 'Fan-
in' and 'Fan-out' it may have an 'Excessive Complexity'. It
cannot be preferred for further use due to required repairing
mechanism effort may be high. Excessive complexity
component is very difficult to understand its elements
communication to produce the result. That kind of
component elements may have high cross communication
and it leads to difficult to redesign or improve the quality of
the component.

C. Relation between Cohesion and Scalability
The Logical relationship among component elements is

known as 'Cohesion' metric. An element in a component
may be related with another element(s) in the same package
through different relationships like 'Generalization',
'Aggregation' or 'Association'. Thorough analysis on
'Cohesion' of different elements may reduce or increase the
identified reuse component size. If elements are selected
only for specified requirements in the new domain then
remaining elements may be removed. That may reduce the
original size of the reuse component. This can be stated
below.

Selected Component Size – SCS

Original Size – OS

SE – No. of Selected Elements for Particular Function

 SCS = OS - SE (2)

Suppose, selected elements from the same reuse
component and other elements from different components
may be required for fulfilling the current needs. Hence the
original size of the same reuse component may be increased
if all elements of that component selected. So the above
equation can be changed as

SEC- No. Of elements from other components

 SCS = OS– ((SE) + (SEC)) (3)

2. FIREFLY ALGORITHM
The 'FireFly' Algorithm is one of the 'meta-heuristic'

algorithm to produce optimized result in an application
domain [9].

The concept of this algorithm can be represented as
follows.

 i) One FireFly can attract other FireFly

 ii) Attractiveness is direct proportional to their
brightness

 iii) if brightness increases and reached its limit
then high-attractiveness is possible.

To derive the optimal result the search space should be
identified with its possible results and constraints. The
populated constraints and cases have to be collected from
the search space. Different parts of the search space have to
monitored to collect the required cases and conditions. The

identified case with a condition can be considered as a
'FireFly'. That created case may attract another case when it
is satisfied condition perfectly. The 'Attracted Firefly' can
come to its peak level when its conditions are matched
perfectly. If all the cases are reached its peak level than
expected solution is derived. If any one of the case

'Firefly' not in the peak level then it leads to that
expected result cannot be reached at that moment.

3. FIREFLY ALGORITHM IN COMPONENT
DESINGING

In every software development new components are
created and existing components are reused to solve the
given problem domain [7]. So searching similar
components is a challenging task due to perfection of that
activity. If identified components not satisfied the
development requirements then it may lead wastage of time
and resources. To avoid those problems, during a system
development the identified new components can have
'Reusability' characteristic or not. It is an additional activity
of a 'Designer' to check the different components and their
metrics value in each construction phase.

A. Search Space for Checking Reusability
The 'Search Space' for Reusability specifies the different

design metrics and their values or threshold values of new
components in the proposed system. Assume that the
different design metrics are different 'FireFly' of a particular
component. When each 'Firefly' attract each other then
expected result from the search space is obtained.

B. FireFlies in the Search Space
 As discussed above, the design metrics such as

 a) Coupling

 b) Stability

 c) Complexity

 are treated as 'FireFly'.

C. Coupling FireFly
This Firefly's case is whether the component has only

Export Coupling. It means that the component provides
services to other component in the system. While analyzing
the coupling value and its type, if designer found that the
component has only this type of coupling then this 'Firefly'
can fly and it lightness increases to attract other metrics or
'Firefly' such as 'Stability'.

D. Stability FireFly
The 'Stability Firefly can have the constraint like the

import coupling is not occurred in the system at any cost.
So the component is not having dependency with other
modules and it can survive its own stuff. When a
component is independent and doing service other
components in the system it has high stability value like 1.
When 'Coupling FireFly' fly, the 'Stability Firefly' is
attracted to check its level. If it is reached 1 then it can meet
with 'Coupling FireFly'.

E. Complexity FireFly
It has a conditional statement like whether the

component elements are in 'Excessive Complexity' or not.
By analyzing 'Structural Complexity' of a Component the
complexity level can be identified. If a component has

Research script | IJRCS
Volume: 04 Issue: 02 2017 © Researchscript.com 2

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

'Excessive Complexity' then this firefly cannot able to fly to
meet other fireflies like 'Coupling FireFly' and 'Stability
Firefly'. When this 'Firefly' has low complexity value then it
can able to fly and attract other 'FireFlies'. When these
'Fireflies' are in flying state and attracted each other then
that corresponding component is reached the solution
'Reusability' one. s

 So consider the intensity value of different design
metrics of a component like

 Coupling Intensity value = Ic

 Stability Intensity value = Is

 Complexity Intensity value = Ix

The firefly algorithm for defining the 'Reusability' level
of package can be represented as follows.

Begin

 1) Objective function: C(x), x =(Ic, Is,Ix);

 2) Generate an initial population of fireflies

 3) Formulate light intensity I so that it is

 associated with C(x)

 4) if C(Coupling) == 'Export Coupling'

 Then

 Ic = High Attractiveness

 Ic move Towards Is

 if C(Stability) == '1'

 Then

 Is = High Attractiveness

 Is move towards Ic.

 If

 C(Complexity) == Low Complexity

 Then

 Ix = 'High Attractiveness

 Ix move towards Ic and Is.

 5) If

 (Ic && Is && Ix = 'High Attractiveness)

 Then

 Component = 'Reusable One'

 else if(Ic or Is or Ix = 'Not Attractive')

 Then

 Component = Not Reusable one

End.

When any of the design metric not satisfied then they
may not be in the 'Flying State'. That’s why the final
statement of the 5th step is the component cannot be
reusable one. By implementing this algorithm as a tool it
will help to check the package characteristic dynamically to
know the level of 'Component Reusability'.

4. RESULTS AND DISCUSSIONS
The proposed algorithm can be used to trace the level of

package reusability by checking the design metrics values.
When a design metric of a component lies between its
ranges then it indicates that some amount of modification
required in future to make the component as 'Reusable' one.
The intermediate values specifying the effort required for
improving 'Reusability' characteristic. For an example,
Assume that the Instability metric of a component value =
0.75. Then that corresponding component may require only
25% of effort from total effort for implemented that
appropriate component. This proposed methodology will
give appropriate values of those design metric and those
will be recorded for further analysis.

In that same way, suppose a component has
combination of 'Fan-in' and 'Fan-out' then Coupling value
will be in the intermediate level. If a component 'Highly-
Coupled' Type and no 'Fan-in' type then there modification
may not be needed. Suppose the same component 'Highly-
Coupled' type with 'Fan-in' type then it has dependency
relationship with other modules in the same system. So it
requires high development cost to remove the dependency.
That dependency can be removed by parent elements from
other component will be identified and grouped in the child
component. That scales the size of the child package. The
proposed approach classifies the components as 'Reusable'
one or not.

5. CONCLUSION
Firefly Algorithm can lead the development team with

higher confidence on tracing the reusable elements in the
proposed system. And also it shows the results for further
modification required or not for making that component as
'Reusable' one or not. This 'Meta-heuristic' algorithm can
give optimized results to categorize components as
'Reusable' one. After categorizing the components then they
are accessed in different approaches to find the suitable
component in further projects [8]. This proposed
methodology takes only less effort from the design phase to
track the components type. So it may improve 'Resource
Management', 'Time Management' and 'Quality
Management' to produce the system with high quality
within the given time period [6].

6. REFERENCES
[1] Andrea Capiluppi and Cornelia Boldyreff (2007) 'Coupling

Patterns in the Effective Reuse of Open Source Software' IEEE
Computer Society.

[2] Anthony Finkelstein, Spanoudakis G. and Ryan .M (1996)
‘Software Package Requirements & Procurement’ Software
Specification and Design, 1996, Proceedings of the 8th
International Workshop.

[3] Merijn de Jonge (2003) ‘Package-Based Software
Development’Euromicro, p. 76, 29th Euromicro Conference
(EUROMICRO'03).

[4] Mili A., Mili R. and Mittermeir R.T (1998) ‘A survey of software
reuse libraries’, Annals of Software Engineering, vol.5 1998.

[5] Wang A.J.A (2002), “Reuse Metrics and Assessment in
Component-Based Development”,Proceedings of Software
Engineering and Applications, Vol. 47, pp. 693- 707.

[6] Nancy Bazilchuk; Parastoo Mohagheghi, (2005) “The Advantages
of Reused Software Components”. R&D and Technology Transfer.

[7] Parvinder S. Sandhu; Hardeep Singh , (2006) “Automatic
Reusability Appraisal of Software Components using Neurofuzzy
Approach”, International Journal of Information Technology
Vol 3, No. 3.

Research script | IJRCS
Volume: 04 Issue: 02 2017 © Researchscript.com 3

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828
[8] Rajesh Bhatia; Mayank Dave; R. C. Joshi (2006) “Retrieval of

Most Relevant Reusable Component Using Genetic Algorithms ”,
software Engineering Research and Practice -SERP, pp. 151-155,
2006.

[9] X. S. Yang,(2009) “Firefly algorithms for multimodal
optimization, in:Stochastic Algorithms: Foundations and
Applications, SAGA 2009, Computer Sciences, Vol. 5792, pp.
169-178.

Research script | IJRCS
Volume: 04 Issue: 02 2017 © Researchscript.com 4

	1. Introduction
	A. Requirements for Components Reuse
	B. Relationship among Fan-in, Fan-out, Coupling, Stability and Complexity
	C. Relation between Cohesion and Scalability

	2. FIREFLY ALGORITHM
	3. FIREFLY ALGORITHM IN COMPONENT DESINGING
	A. Search Space for Checking Reusability
	B. FireFlies in the Search Space
	C. Coupling FireFly
	D. Stability FireFly
	E. Complexity FireFly

	4. RESULTS AND DISCUSSIONS
	5. CONCLUSION
	6. References

