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Abstract— A k-tree is a chordal graph all of whose maximal cliques are the same size k + 1 and all of whose minimal clique
separators are also all the same size k. If a 3-Tree chordal graph G has a planar embedding, then it is called as planar 3-Trees. A planar
graph is a graph that can be embedded in the plane. Given a chordal 3-tree G , compute an embedding on the plane without edge
crossings. In this work, we investigate local properties that provide information about the global cycle structure of a graph. There exists
a closed walk on the graph along the edges such that visited each vertex exactly once and cover all the vertices in a single closed walk.
We present a linear time algorithm to characterize the Hamiltonianicity of a 3-tree, and polynomial time algorithm to recognize the
Hamiltonian circuit in the planar 3-tree. We begin by defining the global cycle properties that we shall consider. The order (number of
vertices) of a graph G is denoted by n. A graph G is Hamiltonian if G has a cycle of length n. We emulate flexibility and feasibility by
giving more features into the Ul. Primary objective is to establish a structural properties and characterization of planar 3-trees and
Hamiltonian cycle. Hamiltonian cycle has more characterization on planar 3-trees with respect to simplicial ordering and perfect
elimination ordering.
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1. INTRODUCTION C. 3-Trees.
. If a 3-Tree chordal graph G has a planar
A, C,Eoglcijgbgirsghﬁaximal set of pair wise adjacent embedding, then it is called as planar 3-Trees. A planar
vertices. The family of cliques of G is denoted by C(G). graph is a graph that can be embedded in the plane. Given a

Forv € V, C_v will denote the family of cliques containing chordal 3-tree G , compute an embedding on the plane
v. All graphs_considered will be assumed to be connected. without edge crossings. There are finitely many embedding

A set S € V is a uv-separator if vertices u and v are in for every finite chordal 3-trees. A p!anar _3—tree Is a
. = R . maximal planar graph has an embedding without edge

different connected components of G-S. It is minimal if no crossings

proper subset of S has the same property. The vertex subset '

S is a minimal vertex separator if there exist two non-

adjacent vertices u and v such that S is a minimal uv- v Vg 7

separator. The vertex subset S will denote the family of all
minimal vertex separators of G. Chordal graphs were

defined as those graphs for which every cycle of length

greater than or equal to four has a chord.

B. Planar 3-Tree:
A k-tree is a chordal graph all of whose maximal A
W e TN ey )

cliques are the same size k + 1 and all of whose minimal n

clique separators are also all the same size k. A k-path is a (a) 3-tree graph (b) planar embedding
k-tree with maximum degree 2k, where for each integer j,k:

j < 2k, there exists a unique pair of vertices, u and v, such Planar 3-tree and its embedding.

that deg(u) = deg(v) = j. A clique tree is more structured

than the chordal graphs due to its clique width property. D. Hamiltonian Cycle:

The development of graph theory has been
profoundly influenced by the evolution of the internet and
resulting large communication networks. Of particular
interest are global properties of such networks that can be
deduced from their local properties. In this work we
investigate local properties that provide information about
the global cycle structure of a graph. A Hamiltonian path
(or traceable path) is a path in an undirected or directed
graph that visits each vertex exactly once. A Hamiltonian
cycle (or Hamiltonian circuit) is a Hamiltonian path that is
a cycle. There exists a closed walk on the graph along the
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edges such that visited each vertex exactly once and cover
all the vertices in a single closed walk.

/' /
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(a) Hamiltonian graph (b) non-Hamiltonian graph
Hamiltonian and non-Hamiltonian graphs.
E. Simplicial Ordering:

Let A denote the simplex category. The objects
of A are nonempty linearly ordered sets of the form [n] =
{0, 1, ..., n} with n>0. The morphisms in A are (non-
strictly) order-preserving functions between these sets. A
simplicial set X is a contra variant function X: A — Set
where Set is the category of small sets. (Alternatively and
equivalently, one may define simplicial sets as covariant
functors from the opposite category Aop to Set.) Simplicial
sets are therefore nothing but presheaves on A.
Alternatively, one can think of a simplicial set as a
simplicial object (see below) in the category Set, but this is
only different language for the definition just given. If we
use a covariant functior X: A — Set instead of a contra
variant one, we arrive at the definition of a cosimplicial set.
Simplicial sets form a category, usually denoted s Set,
whose objects are simplicial sets and whose morphisms are
natural transformations between them.

2. ALGORITHMS

Simplicial Ordering:

Input : G=(V,E)

Output : A function f:vV [N

Integer count =0;

While (not every vertex visited) do

Find a vertex u € v such that
d(u)=3 and G[u] is k4.
f(u) =count;
count++;
mark v as visited

end while;

output f;

Simplicial Leveling:

Input: G=(V,E)

Output: A function LIN [N

Integer count =1;

H=G;

while H is not null graph do

list ]

for each vev[H] do

if deg(u)==3 then

list = list p {u};

end if;

end for;

for vertex u € list do

I(u) = level;

end for;

level++;

H=H-v{list];

end while;

output I;
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Hamiltonian Cycle:

Input: G=(V,E).

Simplicial ordering f:v. [N
Simplicial leveling v [IN

Output: A cycle C of ordering n vertices
Cycle ¢ ]

Choose a vertex ueV such that

L(v) is maximum and

F(v) is minimum

Mark v as visited

While not every vertex visited do

Let v be the current vertex

Choose a vertex U eN(u) such that
L(u)<= I(v) and f(u)<= f(u) or
L(u)<=I(v) and f(u)>=f(v)

Mark u as visited
Pushuontopofvonc

Continue while loop as u as current vertex
And while

Output C.

A. Theorem 1.
Existence of a Hamiltonian path H(u,v)

in G with 6(u, v) _ 3 implies that G is Hamiltonian.
Existence of a Hamiltonian path in a graph _G is ensure.
Lemma 3.2. For H(u,v) in _G, d(u, v) _ 3.
Proof.
Let us assume for clarity of arguments that u is denoted by
1 and v is denoted by n and all vertices along
Hamiltonian path H(u,v) in _G are denoted by 2,3, ..
.,n— 1 and it will be used throughout this
paper. We interchangeably use u, v with 1,n respectively.
We prove Lemma 3.2 by contradiction. Let us assume that
o(u,v) 4.

B. Theorem 2:

Let G = (V ,E) be a connected graph with n
vertices such that for all pairs of distinct nonadjacent
vertices u, v € V we have d(u) + d(v) + 8(u, v) _n+1. Then
G has a Hamiltonian path .1t will be shown in this paper
that famous Ore’s conditions. Also the introduction of the
parameter 8(u, v) it seems to be significant with respect to
the related degree conditions for Hamiltonian paths and
cycles in graphs. The rest of the paper is organized as
follows. We conclude by introducing some open problems
for future research.

Beyond Partial 3-Tress:

In this section, we give some examples of graphs where no
realization with rational coordinates is possible, hence
providing counter-example to some possible conjectured
generalizations. The first example is the octahedron where
all interior face areas are 1 except for two non-adjacent,
non-opposite faces, which have area 3. Any drawing that
respects these areas must have some complex coordinates.
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See Fig. (a) for an illustration of this graph. Note that both
the octahedron and G1 are planar partial 4-trees, so not all
partial 4-trees have equiareal drawings. The second
example is the octahedron where all interior face areas are
1 except that the three faces adjacent to the outer-face have
area 3. (Alternatively, one could ask for an equiareal
drawing of graph G2 in Fig. (b).) Assume, after possible
linear transformation, that the vertices in the outer-face are
at (0, 0), (0, 13) and (2, 0). Thus even if a partial 4-tree has
an equiareal drawing, it may not have one with rational
coordinates.The third example is again the octahedron,
with three of the interior face areas prescribed to be 0,
which forces some edges to be aligned as shown in Fig. (c).
If all other interior faces have area 1/8, and the outer-face
isat (1, 0), (0, 1),

(0, 0), then similar computations show that some of the
coordinates of the other three vertices are (3+V5)/8. If the
edges that appear dotted in the figure are removed, we
obtain a graph that is a crucial ingredient in.

3. ARCHITECTURE DIAGRAM FOR PROPOSED SYSTEM
Planar
Embeddmng

Independent
Vertex

Simplicial
S<=v
Hamiltonian

Cvele

For finding Hamiltonian cycle on planar 3-tree graph two
different methods to be followed they are simplicial
ordering and level elimination, in simplical ordering
process we have to identify the number of 3-cliques in the
planar 3-tree graph,3-clique of an graph can to identify by
the vertex whose having degree less than 3 that vertex is
known as simplical vertex ,in simplicial ordering we have
name the simplicial vertex present in the graph, using level
Elimination process remove the vertices are in simplicial
order, the process to be continue until the 3-tree graph gets
no simplicial vertex.

Hamiltonian
Test
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4. RESULTS AND DISCUSSION

Let V' be the vertex in N_2 (u)\N_1 (v). We distinguish
the following cases. In case 1, u has no neighbor in S 1
(G)\{v}.By the induction hypothesis, there is a
hamiltonian cycle C in G -v. By (1), there exists atleast
one edge ux € E(C)NE(G[N_1 (v)]). Now replacing ux in
C by the path uvxthe resulting cycle is a Hamiltonian
cycle of G. Case 2, u has neighbor in S_1 (G)\{v}. By
Lemma 9N 1 (0)EN_2 (u)u{u} for every o €(S_1
(G&){vhHN N_1 (u). If u has atleast two neighbors in S_1
(G)Y{v}, then when we delete all k+1 vertices of N_2
(u)u{u},we will obtain 4 components except for the unique
case that n=k+4=7. In the former case we obtain a
contradiction, since ©(G)> (k+1)/3. Hence u has exactly one
neighbor in S_1 (G)\{v}. In the latter exceptional case, and
one can easily find a hamiltonian cycle of G. Hence we
now suppose n>=k+5, and we let N_1 (u)\N_2 (u)={v,w}.
Using that G is a (k+1)/3 -tough graph, by Lemma
9,v’weE(G);otherwise N_1 (w)=N_1 (v), and if we delete
all k wvertices of N_1 (w), we obtain atleast three
components, contradicting that G is (k+1)/3 - tough.

By the induction hypothesis, G-{v,w} has a Hamiltonian
cycle C, implying that u has two neighbors x,y in C. If v’
e{x,y}, then v’ e({x,y}{v"'}) is a vertex contained in C
with v’v €E(G), and we replace the path v’ uv” by
v'wuvv”; vVE{x,y}, then there exists at most one vertex in
{x,yHN_1 (w), say yeN_1 (w), and we replace the path
xuy by xvuwy. In both cases the resulting cycle is a
Hamiltonian cycle of G. In Theorem [11], if G is a graph
on n>3 vertices with 3(G)>n/2, then G is Hamiltonian We
now have all the ingredients to prove the following
generalization of the consequence of theorem 7 for 2-tree.
In Theorem [12], if G#K_(2@) is a k+1/3 w tough K-
tree(K>2), then G is Hamiltonian. Proof by Theorem 7 or
its Consequence for 2-trees, we only need to consider the
case that k>=3. We proceed by induction on n=|V(G)|
Obviously 6(G)= k. Hence using theorem 11,we obtain that
if either 4<k<n<k+4 or 3=k<n<k+3=6 , then G is
Hamiltonian

Suppose next that either n>n+5 or n=k+4=7, and that H is
Hamiltonian for any k+1/3 tough k-tree H with fewer than
n vertices By lemma 10, it suffices to consider the case
thatS 2 (G)#@ .for any ue S 2 (G) :
by lemma 8, there exists a vertex ve S_1 (G) such that uv
€ E(G) Since ue S_2 (G) and the N_1 (V)clique contain u

IN_2 () \ N_1 (v)|=k-1,Hence
IN_2 (u)\ N 1 (v)=1. In Lemma 6,Let G#K k be a K-
tree(k>2).Then

G is k-connected;

S_1 (G}0;

S 2 (G) is an independent set;

1(G-v)>1(G) for a k-simplicial vertex veS_1 (G);

Every k-simplicial vertex(if any)of G-S_1 (G) is
adjacent in G to atleast one vertex of S_1 (G).

U(G-S_1(G)>1(G).

5. PROOF

This follows immediately from the definition;
This follows immediately from the definition;
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If not, then for some adjacent vertices u,v €S_1
(G),u is a k-simplicial vertex of G-v with degree d(u)<k, a
contradiction;

If u is a k-simplicial vertex of G-S_1 (G),i.e. with
d (G-s_1(G) ) (u)=k,then d(u)>k;since ug¢S 1 (G).Hence
the claim follows,

Suppose, to the contrary, that S is a tough set of
G-v such that ©(G-v)=[s|/(®((G-V)-S)<t(G).Then
v is adjacent to vertices in atleast two components of (G-
v)-S, contradicting the fact that all neighbors of v are
mutually adjacent (in G and hence in G-v).This completes
the proof, this is a consequences of(v).
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