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Abstract— A k-tree is a chordal graph all of whose maximal cliques are the same size k + 1 and all of whose minimal clique 
separators are also all the same size k. If a 3-Tree chordal graph G has a planar embedding, then it is called as planar 3-Trees. A planar 
graph is a graph that can be embedded in the plane. Given a chordal 3-tree G , compute an embedding on the plane without edge 
crossings. In this work, we investigate local properties that provide information about the global cycle structure of a graph. There exists 
a closed walk on the graph along the edges such that visited each vertex exactly once and cover all the vertices in a single closed walk. 
We present a linear time algorithm to characterize the Hamiltonianicity of a 3-tree, and polynomial time algorithm to recognize the 
Hamiltonian circuit in the planar 3-tree. We begin by defining the global cycle properties that we shall consider. The order (number of 
vertices) of a graph G is denoted by n. A graph G is Hamiltonian if G has a cycle of length n. We emulate flexibility and feasibility by 
giving more features into the UI. Primary objective is to establish a structural properties and characterization of planar 3-trees and 
Hamiltonian cycle. Hamiltonian cycle has more characterization on planar 3-trees with respect to simplicial ordering and perfect 
elimination ordering. 
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1.  INTRODUCTION  
A. Chordal Graph: 

                A clique is a maximal set of pair wise adjacent 
vertices. The family of cliques of G is denoted by C(G). 
For v ∈ V, C_v will denote the family of cliques containing 
v. All graphs considered will be assumed to be connected. 
A set S ⊆ V is a uv-separator if vertices u and v are in 
different connected components of G-S. It is minimal if no 
proper subset of S has the same property. The vertex subset  
S  is a minimal vertex separator if there exist two non-
adjacent vertices u and v such that S is a minimal uv-
separator. The vertex subset S will denote the family of all 
minimal vertex separators of G. Chordal graphs were 
defined as those graphs for which every cycle of length 
greater than or equal to four has a chord. 
 

B. Planar 3-Tree: 
                A k-tree is a chordal graph all of whose maximal 
cliques are the same size k + 1 and all of whose minimal 
clique separators are also all the same size k. A k-path is a 
k-tree with maximum degree 2k, where for each integer j,k∶ 
j < 2k, there exists a unique pair of vertices, u and v, such 
that deg(u) = deg(v) = j. A clique tree is more structured 
than the chordal graphs due to its clique width property. 
 

 
 

C. 3-Trees. 
                If a 3-Tree chordal graph G has a planar 
embedding, then it is called as planar 3-Trees. A planar 
graph is a graph that can be embedded in the plane. Given a 
chordal 3-tree G , compute an embedding on the plane 
without edge crossings. There are finitely many embedding 
for every finite chordal 3-trees. A planar 3-tree is a 
maximal planar graph has an embedding without edge 
crossings. 
 

 
Planar 3-tree and its embedding. 

 
D. Hamiltonian Cycle: 

                The development of graph theory has been 
profoundly influenced by the evolution of the internet and 
resulting large communication networks. Of particular 
interest are global properties of such networks that can be 
deduced from their local properties. In this work we 
investigate local properties that provide information about 
the global cycle structure of a graph. A Hamiltonian path 
(or traceable path) is a path in an undirected or directed 
graph that visits each vertex exactly once. A Hamiltonian 
cycle (or Hamiltonian circuit) is a Hamiltonian path that is 
a cycle. There exists a closed walk on the graph along the 
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edges such that visited each vertex exactly once and cover 
all the vertices in a single closed walk. 
 

 
Hamiltonian and non-Hamiltonian graphs. 

E. Simplicial Ordering: 
                Let Δ denote the simplex category. The objects 
of Δ are nonempty linearly ordered sets of the form [n] = 
{0, 1, ..., n} with n≥0. The morphisms in Δ are (non-
strictly) order-preserving functions between these sets. A 
simplicial set X is a contra variant function X: Δ → Set 
where Set is the category of small sets. (Alternatively and 
equivalently, one may define simplicial sets as covariant 
functors from the opposite category Δop to Set.) Simplicial 
sets are therefore nothing but presheaves on Δ.  
Alternatively, one can think of a simplicial set as a 
simplicial object (see below) in the category Set, but this is 
only different language for the definition just given. If we 
use a covariant functior X: Δ → Set instead of a contra 
variant one, we arrive at the definition of a cosimplicial set. 
Simplicial sets form a category, usually denoted s Set, 
whose objects are simplicial sets and whose morphisms are 
natural transformations between them. 

2. ALGORITHMS 
Simplicial Ordering: 
Input    : G=(V,E) 
Output : A function f:V N 
Integer count =0; 
While (not every vertex visited) do 
Find a vertex u ϵ v such that 
          d(u)=3 and G[u] is k4. 
            f(u) =count; 
           count++; 
           mark v as visited 
end while; 
output f; 
Simplicial Leveling: 
Input: G=(V,E) 
Output: A function l:N N 
Integer count =1; 
H=G; 
while H is not null graph  do 
list ɸ 
for each vϵv[H] do 
if deg(u)==3 then 
list  = list µ {u}; 
end if; 
end for; 
for vertex u ϵ list do 
l(u) = level; 
end for; 
level++; 
H=H-v{list]; 
end while; 
output l; 

Hamiltonian Cycle: 
Input: G=(V,E). 
Simplicial ordering f:v N 
Simplicial leveling l:v N 
Output: A cycle C of ordering n vertices 
Cycle  c ɸ 
Choose a vertex uϵV such that 
L(v) is maximum and 
F(v) is minimum 
Mark v as visited 
While not every vertex visited do 
Let v be the current vertex 
Choose a vertex U ϵN(u) such that 
L(u)<= l(v) and f(u)<= f(u) or 
L(u)<=l(v) and f(u)>=f(v) 
Mark u as visited 
Push u on top of v on c 
Continue while loop as u as current vertex 
And while 
Output C. 
 

A. Theorem 1. 
               Existence of a Hamiltonian path H(u,v) 
in _G with δ(u, v) _ 3 implies that _G is Hamiltonian. 
Existence of a Hamiltonian path in a graph _G is ensure. 
Lemma 3.2. For H(u,v) in _G, δ(u, v) _ 3. 
Proof.  
Let us assume for clarity of arguments that u is denoted by 
1 and v is denoted by n and all vertices                along 
Hamiltonian path H(u,v) in _G are denoted         by 2, 3, . . 
. , n − 1 and it will be used throughout this 
paper. We interchangeably use u, v with 1,n respectively. 
We prove Lemma 3.2 by contradiction. Let us assume that 
δ(u, v) _ 4. 
 

B. Theorem 2: 
                 Let G = (V ,E) be a connected graph with n 
vertices such that for all pairs of distinct nonadjacent 
vertices u, v ∈ V we have d(u) + d(v) + δ(u, v) _ n+1. Then 
G has a Hamiltonian path .It will be shown in this paper 
that famous Ore’s conditions. Also the introduction of the 
parameter δ(u, v) it seems to be significant with respect to 
the related degree conditions for Hamiltonian paths and 
cycles in graphs. The rest of the paper is organized as 
follows. We conclude by introducing some open problems 
for future research. 
 
Beyond Partial 3-Tress: 
In this section, we give some examples of graphs where no 
realization with rational coordinates is possible, hence 
providing counter-example to some possible conjectured 
generalizations. The first example is the octahedron where 
all interior face areas are 1 except for two non-adjacent, 
non-opposite faces, which have area 3. Any drawing that 
respects these areas must have some complex coordinates. 
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See Fig. (a) for an illustration of this graph. Note that both 
the octahedron and G1 are planar partial 4-trees, so not all 
partial 4-trees have equiareal drawings. The second 
example is the octahedron where all interior face areas are 
1 except that the three faces adjacent to the outer-face have 
area 3. (Alternatively, one could ask for an equiareal 
drawing of graph G2 in Fig. (b).) Assume, after possible 
linear transformation, that the vertices in the outer-face are 
at (0, 0), (0, 13) and (2, 0). Thus even if a partial 4-tree has 
an equiareal drawing, it may not have one with rational 
coordinates.The third example is again the octahedron, 
with three of the interior face areas prescribed to be 0, 
which forces some edges to be aligned as shown in Fig. (c). 
If all other interior faces have area 1/8, and the outer-face 
is at (1, 0), (0, 1), 
(0, 0), then similar computations show that some of the 
coordinates of the other three vertices are (3±√5)/8. If the 
edges that appear dotted in the figure are removed, we 
obtain a graph that is a crucial ingredient in. 

3. ARCHITECTURE DIAGRAM FOR PROPOSED SYSTEM 
 

 
For finding Hamiltonian cycle on planar 3-tree graph two 
different methods to be followed they are simplicial 
ordering and level elimination, in simplical ordering 
process we have to identify the number of 3-cliques in the 
planar 3-tree graph,3-clique of an graph can to identify by 
the vertex whose having degree less than 3 that vertex is 
known as simplical vertex ,in simplicial ordering we have 
name the simplicial vertex present in the graph, using level 
Elimination process remove the vertices are in  simplicial 
order, the  process to be continue until the 3-tree graph gets 
no simplicial vertex. 
 

4. RESULTS AND DISCUSSION 
Let V^' be the vertex in N_2  (u)\N_1 (v). We distinguish 
the following cases. In case 1, u has no neighbor in S_1 
(G)\\{v}.By the induction hypothesis, there is a 
hamiltonian cycle C in G –v. By (1), there exists atleast 
one edge ux ∈ E(C)ՈE(G[N_1 (v)]). Now replacing ux in 
C by the path uvx,the resulting cycle is a Hamiltonian 
cycle of G. Case 2, u has neighbor in S_1 (G)\{v}. By 
Lemma 9,N_1 (ω)⊆N_2 (u)∪{u} for every ω ∈(S_1 
(G){v})∩ N_1  (u). If u has atleast two neighbors in S_1 
(G)\{v}, then when we delete all k+1 vertices of N_2 
(u)∪{u},we will obtain 4 components except for the unique 
case that n=k+4=7. In the former case we obtain a 
contradiction, since τ(G)≥ (k+1)/3. Hence u has exactly one 
neighbor in S_1 (G)\{v}. In the latter exceptional case, and 
one can easily find a hamiltonian cycle of G. Hence we 
now suppose n>=k+5, and we let N_1 (u)\N_2 (u)={v,w}. 
Using that G is a (k+1)/3 -tough graph, by Lemma 
9,v’w∈E(G);otherwise N_1 (w)=N_1 (v), and if we delete 
all k vertices of N_1 (w), we obtain atleast three 
components, contradicting that G is (k+1)/3 - tough. 
By the induction hypothesis, G-{v,w} has a Hamiltonian 
cycle C, implying that u has two neighbors x,y in C. If v’ 
∈{x,y}, then v” ∈({x,y}\{v^'}) is a vertex contained in C 
with v”v ∈E(G), and we replace the path v’ uv” by 
v’wuvv”; v^'∉{x,y}, then there exists at most one vertex in 
{x,y}\N_1 (w), say y∈N_1 (w), and we replace the path 
xuy by xvuwy. In both cases the resulting cycle is a 
Hamiltonian cycle of G. In Theorem [11], if G is a graph 
on n≥3 vertices with δ(G)>n/2, then G is Hamiltonian We 
now have all the ingredients to prove the following 
generalization of the consequence of theorem 7 for 2-tree. 
In Theorem [12], if G≠K_(2@) is a k+1/3 w tough K-
tree(K≥2), then G is Hamiltonian. Proof by Theorem 7 or 
its Consequence for 2-trees, we only need to consider the 
case that k>=3.  We proceed by induction on n=|V(G)| 
Obviously δ(G)= k. Hence using theorem 11,we obtain that 
if either 4≤k≤n≤k+4 or 3=k≤n≤k+3=6 , then G is 
Hamiltonian  
Suppose next that either  n≥n+5 or n=k+4=7, and that H is 
Hamiltonian for any k+1/3 tough k-tree H with fewer than 
n vertices By lemma 10, it suffices to consider the case 
thatS_2 (G)≠∅ .for any u∈ S_2 (G)   ,                                         
by lemma 8, there exists a vertex v∈ S_1 (G)   such that  uv 
∈ E(G) Since  u∈ S_2 (G)  and the N_1 (V)clique contain u  
|N_2 (u) \  N_1 (v)|=k-1,Hence                                            
|N_2 (u) \  N_1 (v)|=1. In Lemma 6,Let G≠K k be a K-
tree(k≥2).Then 
 G is k-connected; 
 S_1 (G)≠Ø; 
 S_2 (G) is an independent set; 
 τ(G-v)≥τ(G) for a k-simplicial vertex vϵS_1 (G); 
 Every k-simplicial vertex(if any)of G-S_1 (G) is 
adjacent in G to atleast one vertex of S_1 (G). 
 τ(G-S_1(G)≥τ(G). 

5. PROOF 
This follows immediately from the definition; 
This follows immediately from the definition; 
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 If not, then for some adjacent vertices u,v ∈S_1 
(G),u is a k-simplicial vertex of G-v with degree d(u)<k, a 
contradiction; 
 If u is a k-simplicial vertex of G-S_1 (G),i.e. with 
d_(G-s_1(G)  ) (u)=k,then d(u)>k;since u∉S_1 (G).Hence 
the claim follows, 
 Suppose, to the contrary, that S is a tough set of 
G-v such that                  τ(G-v)=|s|/(ω((G-v)-S)<τ(G).Then 
v is adjacent to vertices in atleast two components of (G-
v)-S, contradicting the fact that all neighbors of v are 
mutually adjacent (in G and hence in G-v).This completes 
the proof, this is a consequences of(v). 
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