
 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

PREFETCHER FOR TUNING MAPREDUCE
FRAMEWORK IN BIGDATA

S.Tamil Selvan1 | J.Kokilavani2
1(AP / CSE, M.P.N.M.J. Engineering College, Chennimalai, Erode, India, stamilselvancse@gmail.com)

2(AP / MCA, Vivekanandha Institute of Information and Management, Tiruchengode, India, vanijagan2k4@yahoo.co.in)

Abstract— The big-data refers to the large-scale distributed data processing applications. Google’s MapReduce and Apache’s
Hadoop, is an open-source framework that operates extraordinarily on large amounts of data. MapReduce framework is the framework
that generates a large amount of intermediate data. Such abundant information is thrown away after the tasks finish, because
MapReduce is unable to utilize them. In order to enhance efficiency of MapReduce functionality, we propose a data-aware prefetcher
framework for big-data applications. In this framework tasks submit their intermediate results to the prefetcher. A task queries the
prefetcher before executing the actual computing work. A novel prefetch description scheme and a prefetch request and reply protocol
are designed. Experimental results show that Prefetcher significantly improves the completion time of Hadoop MapReduce job.

Keywords—Big-data, MapReduce,Hadoop, Prefetcher,Intermediate results
__

1. INTRODUCTION
1.1 Big data

 Big data is a budding term that describes any
voluminous amount of structured, semi structured and
unstructured data in areas including internet search, social
network, education, finance, health care and business
informatics. The main characteristics of BigData are
Volume, Variety, Velocity, Variability, Veracity and
Complexity. This describes the data is big in Volume, has
multiple categories, speed of gathering data to meet the
requirement, consistency/quality of the data and the
complexity in collecting, processing data to obtain the
required information. Google MapReduce[1] is a
programming model and a software framework for large-
scale distributed computing on large amounts of data.
Figure 1 illustrates the high-level work flow of a
MapReduce job ,input data is first split and then feed to
workers in the map phase. Individual data items are called
records. The MapReduce[6] system parses the input splits
to each worker and produces records. After the map phase,
intermediate results generated in the map phase are
shuffled and sorted by the MapReduce system and are then
fed into the workers in the reduce phase. Final results are
computed by multiple reducers and written to the disk.

Fig. 1 A illustration of the MapReduce programming model

2. LITERATURE REVIEW
1. Large-scale Incremental Processing Using Distributed

Transactions and Notifications [2] Daniel Peng et al.
proposed, a system for incrementally processing updates to
a large data set, and deployed it to create the Google web
search index. By replacing a batch based indexing system
with an indexing system based on incremental processing
using Percolator, Auther process the same number of
documents per day.
2. Design and Evaluation of Network-Leviated Merge for
Hadoop Acceleration [5] Weikuan Yu et al. proposed,
Hadoop-A, an acceleration framework that optimizes
Hadoop with plugin components for fast data movement,
overcoming the existing limitations. A novel network-
levitated merge algorithm is introduced to merge data
without repetition and disk access. In addition, a full
pipeline is designed to overlap the shuffle, merge and
reduce phases. Our experimental results show that Hadoop-
A significantly speeds up data movement in MapReduce
and doubles the throughput of Hadoop.
3. Improving Mapreduce Performance through Data
Placement in Heterogeneous Hadoop Cluster [3]Jiong Xie
et al. proposed that ignoring the data locality issue in
heterogeneous environments can noticeably reduce the
MapReduce performance. In this paper, author addresses
the problem of how to place data across nodes in a way that
each node has a balanced data processing load.Given a data
intensive application running on a Hadoop MapReduce
cluster, our data placement scheme adaptively balances the
amount of data stored in each node to achieve improved
data-processing performance. Experimental results on two
real data-intensive applications show that our data
placement strategy can always improve the MapReduce
performance by rebalancing data across nodes before
performing a data-intensive application in a heterogeneous
Hadoop cluster.
4. Improving MapReduce Performance in Heterogeneous
Network Environments and Resource Utilization [4]

IJRCS - International Journal of Research in Computer Science
Volume: 04 Issue: 02 2017 www.researchscript.com 16

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

Zhenhua Guo et al. proposed, Benefit Aware Speculative
Execution which predicts the benefit of launching new
speculative tasks and greatly eliminates unnecessary runs
of speculative tasks. Finally, MapReduce is mainly
optimized for homogeneous environments and its
inefficiency in heterogeneous network environments has
been observed in their experiments. Authors investigate
network heterogeneity aware scheduling of both map and
reduce tasks. Overall, the goal is to enhance Hadoop to
cope with significant system heterogeneity and improve
resource utilization.

3. MOTIVATION
MapReduce provides a standardized framework for
implementing large-scale distributed computation, called
as, the big-data applications. However, there is a limitation
of the system, i.e., the inefficiency in incremental
processing[7]. Incremental processing refers to the
applications that incrementally grow the input data and
continuously apply computations on the input in order to
generate output. There are potential duplicate computations
being performed in this process. However, MapReduce
does not have the technique to identify such duplicate
computations and accelerate Task execution. Motivated by
this observation, in this paper we propose, a data-aware
prefetcher for big-data applications using the MapReduce
framework, which aims at extending the MapReduce
framework and provide a prefetch layer for efficiently
identifying and accessing prefetch items in a MapReduce
job.

4. NEED
A scheme to describe the prefetcher, a prefetch request and
reply protocols are designed. Prefetcher is implementing by
extending Hadoop. It improves the completion time of
MapReduce jobs by preventing the repeated jobs.

4.1 Prefetcher Management Phase
 Prefetcher works as a centralized system. All the
unique input and output data performed by clients are feed
in to the prefetcher[8]. The data in prefetcher is stored as a
log which contains the input and the place where the output
is available. Each client checks the prefetcher before it
starts the functioning. If the prefetcher contains that task
then the client machine can easily retrieve information
from it, else the prefetcher accept data from the client.
prefetcher prevents the occurrence of repeated tasks. The
above process is clearly illustrated in the figure2

Fig. 2 Architecture of a data-aware prefetcher framework

Below example portray the MapReduce functionality in
detail. For an example,we are considering one line as each.
However, this is not necessarily true in a real-time
scenario. Map() in the below case holds the occurance of
each word captured as (the, 1), (blue, 1), (empty, 1) and so
on. The output of Map() is Intermediate Results. Reduce
phase produce the final sum of words.

Fig. 3 MapReduce functionality

Input: First the input data are split into fixed number of
pieces and then they are feed to different workers (data
nodes) in the mapreduce environment. Records are
individual data items. Each worker process the input file as
per the user program.

Map phase: In this phase, each input split is fed to the
mapper who has the function map (). This map function
count the occurrence of each word and each occurrence is
captured and arranged as (Key, value) pairs. After
processing the intermediate results are stored in the data
node’s hard disk.

Prefetch request and reply protocol: We use prefetch
request and reply protocol to get the results that are stored
in data nodes. Before processing the splits, the data node
sends the request to prefetcher. All the unique input and
output data performed by clients are feed to the prefetcher.
The data is stored as a log in prefetcher which contains the
input and the place where the output is available. Each
client checks the prefetcher before it starts the functioning.
If the prefetcher contains that task then the client machine
can easily retrieve information from it, else the prefetcher
accept task from the client. If data is already processed, the
prefetcher sends the positive reply to the data node.
Otherwise send the negative reply. If negative reply
obtained, the data node do the process on the split file. If
positive reply obtained, the data node need not process the
splits. So, no need to process the repeated data. Prefetcher
ensures the repeated input split files need not process more
than one time. Finally all the intermediate files are reduced
by data node and the final result is stored in Name node.

Reduce phase: In this step, for each unique key, the
framework calls the application's Reduce () function. The
Reduce can iterate through the values that are associated
with that key and produce zero or more outputs. In the
word count example, the input value is taken by reduce
function, sums them and generates a single output of the
word and the final sum. The output of the Reduce is

Research script | IJRCS
Volume: 04 Issue: 02 2017 © Researchscript.com 17

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

writing to the stable storage, usually a distributed file
system.

5. RESULT AND PERFORMANCE ANALYSIS
There are several steps for installing and configuring

Hadoop. First install the following software, and then
configure hadoop.

• VMware Workstation 10
• Create new virtual machine and install ubuntu OS

14.04
• Install Java SE 7
• Install SSH
• Install Apache Hadoop 2.7.1

Case-1: CPU Utilization of Hadoop & Prefetcher
In this case, CPU utilization ratio is measured by
averaging the CPU utilization ratio of the process of the
MapReduce jobs over time. From the figure, it is clear that
Prefetcher saves significant amount of CPU cycles. With a
larger incremental size, the CPU utilization ratio of
prefetcher grows significantly too.

 Fig. 4 CPU utilization of Hadoop&Prefetcher

Case-2: Completion time of Hadoop & Prefetcher
 This case proves that prefetcher indeed removes redundant
tasks in incremental MapReduce jobs and reduces job
completion time. The redundancy of input file is checked
by prefetcher which in turn tremendously increase the
performance.

 Fig. 5 Completion time of Hadoop &Prefetcher

6. CONCLUSIONS
 This paper focuses on the problem of inefficiency in
incremental processing. Incremental processing refers
those applications that incrementally grow the input data
and continuously apply computations on the input in order
to generate output. There are lots of duplicate computations
being performed in this process. MapReduce does not have
a mechanism to find out these computations. The data
aware prefetcher in MapReduce framework helps to
overcome this problem and provide high efficiency in
incremental processing. It prevents the repeated tasks to
process and increment the performance.

REFERENCES

[1] J. Dean and S. Ghemawat, Mapreduce: Simplified data
processing on large clusters, Commun. of ACM, vol. 51, no. 1,
pp. 107-113, 2008.

[2] D. Peng and f. Dabek,”Large Scale incremental Processing
using distributed Transaction and notification”, in Proc. of
OSDI’2010, Berkeley, CA, USA, 2010

[3] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, “Improving
MapReduce Performance through Data Placement in
Heterogeneous Hadoop Clusters”, Department of Computer
Science and Software Engineering Auburn University,
Auburn, AL 36849-5347

[4] Zhenhua Guo, Geoffrey Fox “Improving MapReduce
Performance in Heterogeneous Network Environments and
Resource Utilization” School of Informatics and Computing
Indiana University Bloomington Bloomington, IN USA

[5] Weikuan Yu, Member, IEEE, Yandong Wang, and Xinyu Que,
“Design and Evaluation of Network-Levitated Merge for Hadoop
Acceleration”, IEEE Transactions on Parallel and Distributed
Systems

[6] Y. Zhang, S. Chen, Q. Wang, and G. Yu, “i2mapreduce:
Incremental mapreduce for mining evolving big data,” CoRR,
vol. abs/ 1501.04854, 2015.

[7] Y. Bu, B. Howe, M. Balazinska and M.D Ernst,”Hadoop:
Efficient iterative data processing on large clusters,” in proc,
VLDB Endowment, 2010, vol. 3,no.1-2, pp.285-296.

[8] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A.
Neumann, V. B. N. Rao, V. Sankarasubramanian, S. Seth, C.
Tian, T. ZiCornell and X. Wang. 2011. Nova: Continuous
pig/Hadoop workflows, in Proc. of SIGMOD’2011, New York,
NY, USA.

C
PU

 U
til

iz
at

io
n

ra
tio

Incremental Size

CPU Utilization of Hadoop & Prefetcher

Prefetcher

Hadoop

C
om

pl
et

io
n

T
im

e

Incremental Size

Completion Time of Hadoop & Prefetcher

Prefetcher

Hadoop

Research script | IJRCS
Volume: 04 Issue: 02 2017 © Researchscript.com 18

	1. Introduction
	2. LITERATURE REVIEW
	3. MOTIVATION
	4. NEED
	5. RESULT AND PERFORMANCE ANALYSIS
	6. CONCLUSIONS
	REFERENCES

