

A REVIEW ON MICRO-MANUFACTURING, MICRO-FORMING AND THEIR KEY ISSUES

V. Chowthies¹

¹(Asst Prof, Dept of Mechanical Engineering, M.P.N.M.J Engineering College, Erode-638112, evchowmech@gmail.com)

Abstract—Micro-manufacturing has received good attention globally in terms of its manufacturing methods/processes. One of the most popular micro-manufacturing processes is micro-forming. Many efforts have been focused on micro-forming, mainly on the micro-stamping process due to the process itself contributing numerous products, especially in its conventional macro-process. Most every- day products are made by this process. Although there were efforts made to realize micro-forming for industrial application, the technology itself was seen as being insufficiently mature. Much development work needed to be done, specifically to develop a fully-automated high-volume production micro-forming machine, which is reliable and at all times ready for operation in terms of it processes, tooling, and material - handling to ensure the successful production of micro-products. The paper addresses key issues encountered by researchers worldwide on both micro-manufacturing, specifically micro-forming.

1. Introduction

The term micro man uf acturing concept in the conte xt of min iature factory is understood to be a microfactory and it is a relatively new concept concerning manufacturing systems [1-4]. A micro-factory can defined as a small manufacturing system conceived as a means of achieving higher throughput space and reduced consumption of both resources and energy via downsizing of production processes [5]. This means that all of the equipment has necessarily to be reduced to the micro-scale (micro-machines) which in-turn, reduce the energy consumptions, preliminary and overhead costs, and material requirements, along with reducing pollutions creating a more user-friendly production environment. As the scale of the equipment is reduced, the mass of the equipment itself can be reduced dramatically and this will lead to the increasing of tool speed and at the same time will result in improvement of the production rates by the reduction of the manufacturing cycle. In addition to the foregoing advantageous, force/energy loop and the control loops for small-size equipment are believed by many researchers to be significantly shorter.

In 1990, a research group from the Mechanical Engineering Laboratory (MEL), Tsukuba Japan, studied the effect of miniaturization of production systems. The estimation was made that in the case of a

1/10 size reduction of production machines, the total energy consumption in the

factory decreases to approximately 1/100

compared to that of the conventional factory. The most significant advantage of

micro-manufacturing is the capability for

producing parts which having feature sizes of less than $100\mu m$ [6-9], or little greater than the thickness of a human hair.

At this scale, the slightest variation in the manufacturing process caused by material or cutting tool characteristics, thermal variations in the machine, vibration and any number of minute changes, will have a direct impact on the ability to produce features of this type on a production scale.

ISSN: 2349-3860

2. MICRO PARTS DEFINITIONS

A meso-part is regarded as a part that is greater in size than a few millimeters (as a reference, the meso-domain is defined as products fitting in a box of 200 x 200 x 200mm3) [10]. However, a micro-part is concerned with small parts with typical part-dimensions in the range of sub-millimeters up to a few millimeters, although part-features may be in the micro-meter range. The typical positional precision for such parts is expected to be in the range of 0.1 to 10µm. The micro-domain allows for, and sometimes demands, the application of methods and techniques that cannot be applied in the meso-domain.

3. MICRO MANUFACTURING METHODS AND PROCESSES

The trend for micro-manufacturing at the present time is more focused on miniaturizing or down-scaling conventional and non-conventional methods to produce micro-products. Additionally, there are also emerging methods, such as the hybrid manufacturing methods, which combine two or more processes together [8]. Manufacturing processes can be categorized according to the type of energy used in the process itself, such as mechanical, chemical, electrochemical, electrical laser processes. The working principles behind each process include consideration of mechanical thermal effects, ablation, dissolution, solidification, repolymerisation/lamination, and composition, [11]. According to the way in sintering components/products are to be made, general manufacturing processes can also be classified into subtractive, additive, forming, joining and hybrid processes. The classification is equally applicable to micromanufacturing. Typical manufacturing methods against the way of producing components/products are show in Table 1.

IJRME - International Journal of Research in Mechanical Engineering Volume: 04 Issue: 02 2017 www.researchscript.com

TABLE 1:TYPICAL METHODS/PROCESSES IN MICRO-MANUFACTURING.

	T
Subtractive processes	Micro-Mechanical Cutting (milling, turning, grinding, polishing, etc.); Micro- EDM; Micro-ECM; Laser Beam Machining; Photo- chemical- machining; etc.Beam Machining; Electro-Beam Machining; Photo- chemical- machining; Photo- chemical- machining; Photo- chemical- machining; Photo- chemical- machining; etc.
Additive processes	Surface coating (CVD, PVD); Direct writing (ink - jet, laser-guided); Microcasting; Micro-injection moulding; Sintering; Photoelectro-forming; Chemical deposition; Polymer deposition;
Deforming processes	Micro-forming (stamping, extrusion, forging, bending, deep drawing, incremental forming, superplastic forming, hydro-forming, etc.); Hot-embossing; Micro/Nano-imprinting; etc.
Joining processes	Micro-Mechanical- Assembly; Laser- welding; Resistance, Laser, Vacuum Soldering;
Hybrid processes	Micro-Laser-ECM; LIGA and LIGA combined with Laser-machining; Micro-EDM and Laser assembly; Shape Deposition and Laser machining; Efab; Laser-assisted-micro-forming; Micro assembly injection moulding; Combined micro-machining and casting; etc.

4. MICRO-MANUFACTURING MACHINES/TOOLS

As to what has been experienced to date, the vast and rapid development of micro-manufacturing technology covered almost all area in conventional machinery processes. In response to this continued development, many researchers and companies have proposed and developed their micro-machine prototype. In the earlier age of micro-manufacturing development, research in micro-manufacturing focused more on assembly and conveyance processes. which research was led by the Japanese researchers and industries [12-15]. This in turn led to the booming of similar development work by European countries, such as Project Miniprod developed by [16]. Effort was also widened up by the development work of the miniproduction system by Klocke Nanotechnik [17-18]. The micro-factory includes a nano- robotics module with a repeatability of 50nm.

5. MICRO-MANUFACTURING AND KEY ISSUES

The design of micro-products for micro-manufacturing needs to address production issues extensively to be able to succeed compared to the situation with prototype-products The high-volume based on micro- technologies. production of micro-components should be the main goal for the design of micro-manufacturing. When these products are designed, not only will functional requirements need to be considered, but also micromanufacturing- related factors will have to be taken into account. This is because manufacturing challenges. products renders more significant compared to those for the manufacture of macroproducts. Issues related to micro- manufacturing have been addressed intensively by many researchers [11, 21]. The followings are some typical issues to be addressed at the design stage of micro- manufacturing machinery.

ISSN: 2349-3860

5.1 Factors negligible conventionally

There is a limit to how far conventional macro-scale machining can be scaled down for miniaturization. Beyond certain dimensions, factors that can be ignored with conventional machining suddenly play a big part in micro- manufacturing: vibration, tool-offset, temperature, the rigidity of the tools and the structure of the machines, and chip removal, are more important because these factors have a greater influence on micro-products.

5.2 *Volume* production and automation

Another issue occurred in current micro-process technology is in terms of process automation. Standalone and manual processes of the developed prototypes have required every aspect on the process to need manual Most of the processes such adjustments. principal processes: pressing, milling, turning etc. handling processes; and material loading and unloading, tool positioning and aligning; were all configured controlled manually and by separate dedicated controllers to obtain precise and accurate motion and alignment.

5.3 Tooling dimension Structure

Another key-issue in micro- manufacturing development is tooling limitation. At present, 10µm endmill tools have been realized, these tools being made from carbide (PMT). 25-50micron milling- and-drilling tools currently have been found satisfactory and can be found commercially [22-23]. Although micro-tooling development started more than a decade ago, there is still limitations existing, which limits the applicability of the tooling [24-25]. Only aspect ratios (the ratio of the tool diameter to the drilling depth) of 5 to 10 have been found suitable, and some have aspect ratios of even than five. Deeper-plunging and-drilling result in tooling breakage, hence, makes the tooling unsuitable for the aerospaceand automotiveindustries; which require very- high-strength material of

Research script | IJRME Volume: 04 Issue: 02 2017

low mass. The achievable precision of the drilled holes has not yet been studied extensively and, furthermore, issue regarding the aligning of micro tools of sub-micron precision has not yet been explored extensively because no automatic machine is available at present capable of aligning tools of sub- micron precision [26].

5.4 Unwanted external forces Structure

Precise positioning is also a main problem encountered in the handling of micro-parts [27]. The external forces involved in physical contact, such as the electrostatic, sticking or adhesion effect, and Van Der Waals force, have become key issues and numerous studies have been made to understand the situation and the strategy necessary to eliminate those forces mathematically and practically [29-35].

6. SHEET-METAL FORMING AND STAMPING STRUCTURE

components are used extensively in Sheet-metal various applications such as vehicles, aircraft, electronic products, medical implants and packaging consuming goods, typical parts/components including carpanels, aircraft skins, cans for food and drinks, frames for TV/computer screens/monitors/displays, etc. Concerning miniature/micro-products, sheet- metal parts include electrical connectors and lead-frames, micro-meshes for masks and optical devices, micro-springs for microswitches, micro-cups for electron guns and micropackaging, micro-laminates for micro-motor and fluidic devices, micro-gears for micro-mechanical devices, casings/housings for micro-device assembly/packaging, micro-knives for surgery, etc. Therefore, sheet-metal parts are closely associated with everyday life.

Basic process-configurations for the forming of macro-products include shearing, blanking, bending, stamping, deep drawing (including mechanical and hydro-mechanical), hydro-forming, stretching forming, super-plastic forming, age forming, spinning, explosive forming, incremental forming, etc.

One of the popular and highly-in-demand forming processes is stamping. Metal stamping has been defined as a process employed in the manufacturing of metal parts with a specific design from sheet-metal stock and includes a wide variety of operations such as punching, blanking, embossing, bending, flanging and coining [36]. Common examples are sheet-metal machines, automobile parts, metal components used in audio- and video-devices, aerosol spray cans, and even military tanks. A household example is the use of sheet metals to make pots and pans.

Sheet metal can be deformed into different predetermined shapes. The metal must be malleable and needs to flow easily in order to be drawn into various shapes. Stamping can be done on metals such as aluminium, zinc, steel, nickel, inconel, titanium, bronze, copper and other alloys. The process itself is a mass-

production, which is very economical process with low cycle time. Hence, it is widely used in the manufacturing of large-volume products with semiskilled labour. The process is also called chipless manufacturing.

ISSN: 2349-3860

Metal-stamping process uses dies and punches to cut the metal into the required shape. The male components are called punches and the female components are called dies. Press machine-tools are used in the process. The die, made of hardened steel, has a contour the shape of the finished part and is that matches mounted on the table of the press. The punch, made of hardened tool-steel or carbide, also matches contour of the part but is slightly smaller to allow clearance between the die and the punch. It is mounted in the head or the turret, which moves down and punches the metal. The thickness of the sheet metal does not change during this process.

7. MICRO-STAMPING PROCESSES

Numerous research investigations have been conducted worldwide covering the micro- forming showing that micro-forming is on a promising path towards its application in industrial production. Moreover. metal forming offers some attractive characteristics that are superior to those of other processes, for example, machining and chemical etching, considering such features as high production-rates, better material integrity, less waste, lower manufacturing costs, Therefore, micro- forming could be a better option for the mass-manufacture of micro-products at a reduced cost, provided that a proper manufacturing facility is developed.

Literally the same as in the conventional stamping process but, instead, macro- and meso-scale products being produced, micro- stamping is intended to produce miniaturized products and components. Micro-stamping is seen useful to produce parts such as wristwatch and micro handheld-device components, medical products etc. [36].

The of micro-stamping controlled stages punching process with a micro development showed a gradual development of the process. Effort had been expended to punch. perform an automatic and hybrid simple A new, low-cost, bench-top machine punching process on brass strip [8, 40]. This effort continued with the development of a manually-operated stamping machine dedicated for micro-sheet-forming was developed at the University of Strath clyde collaboration with EU with [6],with the

[6],with collaboration with EU with the capability of employing various MAMSICRO consortium partners. A linear- punch shapes [7]. The latest efforts in micromotor driving mechanism was used. The stamping development have that multistage/progressive demonstrated die micro machine enables the micro-stamping/forming of sheet-metal parts (ideally for sheet metals stamping may be used for the

Research script | IJRME

micro-sheet forming process [6]. A fully-automatic linearmotor-driven multi-stage/progressive-tool micro- stamping machine has been developed with collaboration between the University of Strathclyde and its European partnership. In the micro-stamping process, not only is the machine itself physically of a thickness of less m). The machine has a maximum working space of 400mm x 400mm with a flexible set-up, due to having a modular design, in which the ram-driven form/power is changeable without need of changing other machine set-ups; and four machine-frame columns and supports to the ram guiding bridge can scaled down, but the tools required for the process also have to be capable of producing be re-positioned requirements, as well according the as the sheet-metal the required micro-parts through scaling down. Efforts made by [6] have demonstrated the successful operation of single-stage and feeder, and the part carrier. The bridge for guiding the ram is separated from the main machine frame, and hence it is not for affected multi-stage tooling the micro-sheetsignificantly by the deflection of the main forming process. Various parts with micro- features have been produced successfully frame and by vibration.

8. CONCLUSIONS

Micro- manufacturing has received Micro-Stamping Machines and Tools good attention globally in terms of its The research trend began with manufacturing Many efforts have been focused on methods/processes. micro- forming, fundamental studies of every aspect in micro- forming, covering the work material and the mainly on the micro-stamping process due to the process itself contributes to numerous appropriate tooling in mid2000, the effort was extended the development of a micro-formingproducts, especially in process. Most every-day by this process. Although its conventional products are made there were efforts prototype by groups of researchers as well as joint-venture industries [40]. The initial development of the micromade to realize stamping for industrial application, the technology itself was seen as being insufficiently mature. Much development work needed to be forming-machine prototype was traditionally based on conventional forming machineries done, specifically to automated high-volume develop a fully- production microand focused on a diverse range of forming stamping machine, which is reliable and at processes, included stamping and all times ready for operation in terms of it bulk-forming processes. Effort made by [7] processes, tooling, and material-handling to and [8] validated the punching of thin sheet- ensure the successful production of micrometal by micro-punch. In [8] the punching products.process was actuated by a high-force DC solenoid and material feeding was done by an Although effort on the automatic

results development

of

micro-stamping demonstrated a successful punching process, different punch geometries being used. [7] machine has been successful vindicated for highproduction and has demonstrated entirely manually confirmed some of concepts, there is still the preliminary lack of effort to address material handling for the micro- stamping process. Feeding sheet-metals in conventional stamping is no longer a major problem in production. However, challenges arise when thinner metal-strips are to be used in micro-stamping (e.g.<100 µm) and the parts/features to smaller be formed become (e.g. sub-millimeter ranges). In these cases, the stamping of a micro-sheetmetal component may require the feeding/positioning the sheet-metal under the forming tools to be accurate as within one to a few microns. This particularly important in multi-stage progressive microstamping, in which neighboring features of a part may be very close to each other. Therefore, feeding the sheetmetal has to be very accurate in order to prevent any inaccurate forming or damage to the neighboring features and connections of the part/scraps to the strip.

ISSN: 2349-3860

REFERENCES

- Qin, Y. (2006) Forming-tool design innovation and intelligent tool- structure/system concepts. International Journal of Machine Tool and Manufacture.46, 11, 1253-1260.
- [2] Okazaki, Y., Mishima, N. & Ashida, K. (2002) Microfactory and micro machine tool. The 1st Korea-Japan Conference on Positioning Technology. Daejeon, Korea.
- [3] Okazaki, Y., Mishima, N. & Ashida, K. (2004) Microfactory Concept, History, and Developments. Journal of Manufacturing Science and Processing, 126, 837-844.
- [4] Claessen, U. & Codourey, A. (2002) Microfactory. Section Head CSEM CH 6055 Alpnach Switzerlan. Switzerland.
- [5] Byung, -. Y. J., Rhim, S.-H. & Oh, S.- L. (2005) Micro-hole fabrication by mechanical punching process. J. Mats. Proc. Tech., 170, 593.
- [6] Chern, G.-L. & Renn, J. C. (2004) Development of a novel micro-punching machine using proportional solenoid. J. Mats. Proc. Tech., 25, 89-93. [9] Chern, G.-L. & Chuang, Y. (2006) Study on vibration-EDM and mass punching of micro holes. J. Mats. Proc. Tech., 180,151-160.
- [7] Qin, Y. (2009) Overview on Micro- Manufacturing. IN QIN, Y. (Ed.) Micro-manufacturing Engineering and Technology. Glasgow, Elsevier.
- [8] Mishima, N., Ashida, K., Tanikawa, T.& Maekawa, H. (2002) Design of a microfactory. Proceedings of the ASME Design Engineering Technical Conference 7th Design for Manufacturing Conference. Montreal, Que., Canada.
- [9] Brussel, H. V., J. Peirs, Reynaerts, D., Delchambre, A., Reinhart, G., Roth, N., Weck, M. & Zussman, E. (2000) Assembly of mi crosystems. Annals of the CIRP, 49, 451-472.
- [10] Gaugel, T., Dobler, H., Malthan, D., Bengel, M. & Weis, C. (2001) Minifabrik für Laserdioden und Biochips. 1 -7.
- [11] Klocke, V. & Gesang, T. (2003) Nanorobotics for Micro Production Technology. Klocke Nanotechnik, Pascalstr. Proceedings of the SPIE,4943, 132-141.-manufacturing: research, technology outcomes and Int J. Adv. Manuf. Technology, (2010)47:821-837.
- [12] Qin, Y. (2007) Advances in micro- manufacturing research and technological development and challenges/opportunities for micro - mechanical- machining. Cutting Tools Congres. Milano, Italy.

Research script | IJRME Volume: 04 Issue: 02 2017

feeder. The

- B. (2004) Micromanufacturing is [13] Aronson, Manufacturing Growing. Engineering. Manufacturing Engineering. 132, 4.
- [14] Kibe, Y., Okada, Y. & Mitsui, K. (2007) Machining accuracy for shearing process of thin -sheet metals-Development of initial tool position adjustment system. International Journal of Machine Tools & Manufacture, 47, 1728-
- [15] Rougeot, P., Regnier, S. & Chaillet, N. (2005) Forces analysis for micro - manipulation. Computational Intelligence Robotics and Automation, IEEE. 105-110.
- [16] Arai, F., Ando, D., Fukuda, T., Nonoda, Y. & Oota, T. (1995) Micromanipulation based on micro physics - Strategy based on attractive force reduction and stress measurement. Proc. IEEE/RSJ. 236-241.
- [17] Arai, F. & Fukuda, T. (1997) A new pick up and release method by heating for micromanipulation. IEEE. 383-388.
- [18] Feddema, J. T., Xavier, P. & Brown, R. (1999) Micro-Assembly Planning with Van Der Waals Force. Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning. Porto, Portugal, IEEE. 32-38.
 [19] Rollot, Y. & Régnier, S. (2000) Micromanipulation par
- adhésion, Nano et micro technologies. 653 -658.
- [20] Tomas, J. (2007) Adhesion of ultrafine particles micromechanical approach. Chemical Engineering Science, 62, 1997-2010. [36] Kalpakjian, S. & Schmid, S. R. (2006) Manufacturing Engineering and Technology, Prentice Hall.
- [21] Geiger, M., Kleiner, M., Eckstein, R., Tiesler, N. & Engel, U. (2001) Microforming. CIRP Annals - Manufacturing Technology, 50, 445-462.
- [22] Vollertsen, F., Hu, Z., Niehoff, H. S. & Theiler, C. (2004) State of the art in micro forming and investigations into micro deep drawing. J. Mats.Proc. Tech., 70-79.
- [23] Vollertsen, F., Niehoff, H. S. & Hu, Z. (2006) State of the art in micro forming. International Journal of Machine Tools & Manufacture, 46, 1172-1179.
- [24] Qin, Y. (2006) Micro-forming and miniature manufacturing systems - Development needs and perspectives.11th International Conference on Micro-manufacturing. Urbana-Champaign, USA.
- [25] Qin, Y. (2006) Micro-Forming and miniature manufacturing systems - Development needs and perspectives. J. Mats. Proc. Tech., 177, 8-18. [43] Geiger, M., Vollertsen, F. & Kals, R. (1996) Fundamentals on the manufacturing of sheet metal microparts. Annals of the CIRP, 45(1),227-282.
- [26] Chern, G.-L., Wu, Y.-J. E. & Liu, S.-F. (2006) Development of a micro- punching machine and study on the influence vibration machining in micro-EDM. J. Mats. Proc. Tech., 180.102-109
- [27] Schneider, R. & Groche, P. (2004) Method for the optimization of forming presses for the manufacturing of micro parts. CIRP Annals. 53, 1, 281-284.
- [28] Hu, Z., Vollertsen, F., Niehoff, H. S. & Theiler, C. (2004) State of the art in micro formin g and investigations into micro deep drawing. J. Mats.Proc. Tech., 151, 70-79.
 [29] Park, J. H., Yoshida, K., Nakasu, Y.& Yokota, S. (2002) A
- resonantly- driven piezoelectric micropump for microfactory. Proc. ICMT20002.Kitakyushu.
- [30] Kima, S. S., Hana, C. S. & Lee, Y.-S. (2005) Development of a new burr-free hydro-mechanical punching. J. Mats. Proc. Tech., 162-163, 524-529. [53] Matsushita, N. (2003) Laser Micro-Bending for precise micro-fabrication of magnetic disk components.Int. Sympo. on Laser PrecisionMicrofabrication. No4, Munich.
- H.-W., Hata, S. & Shimokohbe, A. (2003) Microforming of three-dimensional microstructures from thinfilm metallic glass. J. of Microelectromechanical Systems, 12(1),42-52.
- [32] Saotome, Y. & Okamoto, T. (2001) An in-situ incremental microforming system for three-dimensional shell structures of foil materials. J. Mats. Proc. Tech., 113, 636-640.
- [33] Oh, S. I., Rhim, S. H., Joo, B. Y., Yoon, S. M., Park, H. J. & Choi, T. H. (2005) Forming of micro channels with ultra

thin metal foil by cold isostatic pressing. 5th Japan-Korea Joint Symposium on Micro-Fabrication.

ISSN: 2349-3860

- (1998)[34] Schuler Metal Forming Handbook, Springer-Verlag Berlin Heidelberg New York.
- [35] Lai, X., Peng, L., Hua, P., Lan, S. & Ni, J. (2008) Material behavior modelling in micro/meso-scale forming process with size/scale effects. Computational Materials considering Science, 43, 1003-1009.
- [36] Peng, L., Liu, F., Ni, J. & Lai, X. (2007) Size effects in thin sheet metal forming and its elastic plastic constitutive model. Materials and Design, 28, 1731-1736.
- [37] Peng, L., Hu, P., Lai, X., Mei, D. & Ni, J. (2009) Investigation of Micro/meso Sheet Soft Punch Stamping Process simulation and experiments. Materials and Design, 30,783-790.
- [38] Engel, U. & Eckstein, R. (2002) Microforming from basic research to its realization. J. Mats. Proc. Tech., 125-126, 35-44.
- [39] Manabe, K., Shimizua, T., Koyamab, H., Yanga, M. & Itoc, K. (2007) Validation of FE simulation based on surface roughness mod el in micro-deep drawing. J. Mats. Proc. Tech., 204, 89-93.