
 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

EFFECTIVE CLOUD DATA INTEGRITY
CHECKING USING SBA ALGORITHM IN

CLOUD AUDITING
Jijo T P1 | R. Sujitha2

1(UG Student, Christ the King Engineering College, jijotp25@gmail.com)
2(Assistant Professor, Christ the King Engineering College, srisuji14@gmail.com)

Abstract— To provide as an important application in cloud computing, cloud storage offers user scalable, flexible and high quality
data storage and computation services. A growing number of data owners choose to outsource data files to the cloud. Because cloud
storage servers are not fully trustworthy, data owners need dependable means to check the possession for their files outsourced
to remote cloud servers. To address this crucial problem, some remote data possession checking (RDPC) protocols have been
presented. But many existing schemes have vulnerabilities in efficiency or data dynamics. In this paper, we provide a new
efficient RDPC protocol based on homomorphic hash function. The new scheme is provably secure against forgery attack, replace
attack and replay attack based on a typical security model. To support data dynamics, an operation record table (ORT) is
introduced to track operations on file blocks. We further give a new optimized implementation for the ORT which makes the cost of
accessing ORT nearly constant. Moreover, we make the comprehensive performance analysis which shows that our scheme has
advantages in computation and communication costs

Keywords— Cloud Storage; Data Possession Checking; Homomorphic Hash Function; Dynamic Operations
__

1. INTRODUCTION
cloud computing emerges as a novel computing paradigm
subsequent to grid computing. By managing a
great number of distributed computing resources in
Internet, it possesses huge virtualized computing ability
and storage space. Thus, cloud computing is widely
accepted and used in many real applications. As an
important service for cloud computing, cloud service
provider supplies reliable, scalable, and low-cost
outsourced storage service to the users. It provides the
users with a more flexible way called pay-as-you-go model
to get computation and storage resources on-demand.
Under this model, the users can rent necessary IT
infrastructures

Remote data possession checking (RDPC) is an effective
technique to ensure the integrity for data files stored on
CSS. RDPC supplies a method for data owner to efficiently
verify whether cloud service provider faithfully stores
the origina l files without retrieving it. Cloud service
provider tries to provide a promising service for data
storage, which saves the users costs of investment and
resource. Nonetheless, cloud storage also brings various
security issues for the outsourced data. Although some
security problems have been solved In RDPC, the data
owner is able to challenge the CSS on the integrity for the
target file. the important challenges of data tampering and
data lost are still existing in cloud storage. On the one
hand, the accident disk error or hardware failure of the
cloud storage server (CSS) may cause the unexpected
corruption of outsourced files The CSS can generate
proofs to prove that it keeps the complete and uncorrupted
data. The fundamental requirement is that the data owner
can perform the verification of file integrity without
accessing the complete original file. Moreover, the

protocol must resist the malicious server which attempts
to verify the data integrity without accessing the complete
and uncorrupted data. Another desired requirement is that
dynamic data operations should be supported by the
protocol. In general, the data owner may append, insert,
delete or modify the file blocks as needed. Besides,
the computing complexity and communication
overhead of the protocol should be taken into account for
real applications

2. RELATED WORKS
2.1 RDPC PROTOCOL
The first RDPC was proposed by Descartes et all based on
RSA hash function. The drawback of this scheme is that it
needs to access the entire file blocks for each challenge. In
2007, the provable data possession (PDP) model was
presented by Attendees et al., which used the
probabilistic proof technique for remote data integrity
checking without accessing the whole file. In addition,
they supplied two concrete schemes (S-PDP, E-PDP) based
on RSA. Although these two protocols To overcome this
shortcoming, in 2008, they presented a dynamic PDP
scheme by using symmetric encryptio n. Nonetheless, this
scheme still did not support block insert operation. At the
same time, lots of research works devoted to construct fully
dynamic PDP protocols. For instance, Saeb et al.provided
a RDPC protocol for critical informatio n infrastructures
based on the problem to factor large integers, which is
easily adapted to support data dynamics. Elway et
al.first presented a fully dynamic PDP scheme (DPDP) by
using authenticated skip list, which allowed data owner to
append, delete, insert and update file blocks at anytime.
Wang et al. used Merle hash tree (MHT) to propose
another dynamic method for remote data checking, in
which each block was hashed to be a leaf node of MHT.
By sorting all leaf nodes from left to right, the MHT

IJRCS - International Journal of Research in Computer Science
Volume: 05 Issue: 02 2018 www.researchscript.com 17

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

implicitly identified the block position which is
essential for dynamic operations. However, using MHT
caused heavy computation cost. In 2013, Yang and Jia
presented an efficient scheme, in which an index table
was utilized to support dynamic operations. By the
index table, the data owner recorded the logical
location and version number for each block for the
outsourced file. However, to delete or insert one data
block, the verifier had to find the position of the block
and shift the remaining entries to insert or delete a row
in the index table, which still incurred high
computation cost. In, Chen et al. provided a dynamic
RDPC scheme by using homomorphic hash function
defined in . Unfortunately, their scheme was proved
insecure by Yu et al. . To overcome the drawback, Yu et al.
presented a new RDPC protocol based on RDPC scheme in
and proved the security. They also used MHT to achieve
data dynamic operations, which caused the same
shortcoming of inefficient as in

2.2 MOTIVATION AND CONTRIBUTION
It is essential for data owners to verify the integrity for the
data stored on CSS before using it. For example, a big
international trading company stores all the imports and
exports record files on CSS. According to these files, the
company can get the key information such as the logistics
quantity, the trade volume etc. If any record file is
discarded or tampered, the company will suffer from a big
loss which may cause bad influence on its business and
development. To avoid this kind of circumstances, it is
mandatory to check the integrity for outsourced data
files. Furthermore, since these files may refer to business
secret, any information exposure is unacceptable. If the
company competitor can execute the file integrity
checking, by frequently checking the files they may obtain
some useful information such as when the file changes, the
growth rate of the file etc., by which they can guess the
development of the company. Thus, to avoid this situation,
we consider the private verification type in our scheme,
that is, the data owner is the unique verifier. In fact, the
current research direction of RDPC focuses on the public
verification, in which anyone can perform the task of file
integrity checking with the system public key. Although
RDPC with public verification seems better than that with
private verification, but it is unsuitable to the scenario
mentioned above blocks is equal to the product for two
hash values of the corresponding blocks. We introduce a
linear table called ORT to record data operations for
supporting data dynamics such as block modification,
block insertion and block deletion. To improve the
efficiency for accessing ORT, we make use of doubly
linked list and array to present an optimized
implementation of ORT which reduces the cost to nearly
constant level. We prove the presented scheme is secure
against forgery attack, replay attack and replace attack
based on a typical security model. At last we implement
our scheme and make thorough comparison with previous
schemes. Experiment results show that the new scheme has
better performance and is practical for real applications

2.3 HOMOMORPHIC HASH FUNCTION
Our scheme adopts the homomorphic hash function
defined in as the basis, which is described as following:
homomorphic hash function defined in as the basis, which
is described as following:

First, the algorithm H KeyGen(p,q ,m,s)->K is utilized to
obtain the homomorphic key. It takes four security
parameters as inputs, in which p and q are two discrete
log security parameters, m is the sector count of the
message ands is a random seed. It outputs the
homomorphic key K(p,q,g) , where p and q are two random
big primes of p and q. The detailed process of this
algorithm is shown in Fig, in which the function f (x) is
the pseudo-random number generator with seed s and
outputs the next number in its pseudo- random sequence,
scaled to the range (0…x-1).The computation of the hash
value X of the message
Equation should be represented by following

H(s) +H(v)=mod(p,q)+µp+βq+¥x

2.4OPERATION TABLE
operation record table ,it support data dynamics with help
of ORT table ,data owner can check the data changes in
cloud storage and it inform to the data owner a simple
flexible data structure named operation record table (ORT).
The table is reserved on the data owner side and used to
record all the dynamic behaviors on file blocks. ORT has a
simple structure with only three columns, that is Block
Position(BP) , Block Index(BI) and Block Version (BV)
. The BP represents the physical index for the current
block in the file, normally its value is incremented by
1.The BI represents the logical index for the current block,
which is not necessary equal to BP but relevant with the
time when the block appears in the file. The BV indicates
the current version for the block. If the data file is initially
created, the BV values for all blocks are 1. When one
concrete block is updated, its BV value is incremented by
1. It is noted that using the ORT table will increase the
storage overhead of the data owner by O(n), where n is the
count of blocks. However, this extra storage cost is very
little. For example, a 1GB- filewith 16KB block size only
needs 512KB space to store an Arterialized by linked list
(< 0.05% of the file size).

Research script | IJRCS
Volume: 05 Issue: 02 2018 © Researchscript.com 18

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

3. OUTLINE OF OUR RDPC PROTOCOL
In this paper, we investigate the cloud storage system
including two participants: CSS and data owner. The CSS
has powerful storage ability and computation resources, it
accepts
the data owner's requests to store the outsourced data files
and supplies access service. The data owner enjoys CSS's
service and puts large amount of files to CSS without
backup copies in
local. As the CSS is not assumed to be trustable and
occasionally misbehave, for example, modifying or
deleting partial data files, the data owner can check the
integrity for the outsourced data efficiently.
A RDPC scheme includes the following seven algorithms:
TagGen(K, sk, F)->T . This algorithm is executed by
the data owner to produce tags of the file. It inputs the
homomorphic key K , private key sk and file F , and
outputs the tag set T which is a sequential collection for
tag of each block.
Challenge(c) ->chal . The data owner executes the
algorithm to generate the challenge information. It takes
the challenged blocks count c as input and outputs the
challenge chal . ProofGen(F,T,chal) ->P . The CSS
executes this algorithm to generate the integrity proof P . It
inputs the file F , tag set T and the challenge chal and
outputs the proof P .
Verify(K, sk,chal, P)->{1,0} . The data owner executes the
algorithm to check the integrity of the file using the proof P
returned from CSS. It takes homomorphism key K ,
private key sk , challenge chal and proof P as inputs,
and outputs 1if P is correct, otherwise it outputs 0
.Prepare Update(Fi ,UT)->URI . The data owner runs this
algorithm to prepare dynamic data operations on data
blocks. It takes new file block fi the block position i and
the update type UT as inputs, and outputs the update
request information URI . The parameter UT has three
optional elements: insert, modify and delete.
ExecUpdate(URI)->{Success, Fail} . The CSS runs this
algorithm to execute the update operation. It inputs URI
and outputs execution result. If the update operation is
finished successfully, it returns Success , otherwise
returns Fail
The complete work procedure of our RDPC protocol is
illustrated in Fig., in which solid lines and dash lines
represent the processes of data integrity checking and data
dynamic operations respectively.

4. SECURITY REQUIREMENT
The CSS is not fully trusted since it might take malicious
behaviours on outsourced data and hide data corruption

occurrences from data owner so as to keep good
reputation. According to , the dishonest CSS may launch
three types of attacks on RDPC, namely forge attack,
replay attack and replace attack. Forge attack: the CSS
forges a valid tag for the challenged block to cheat the
data owner. Replay attack: the CSS chooses a valid proof
for possession from previous proofs or other informatio
n, without accessing the actual challenged block and tag.
Replace attack: the CSS utilizes the other valid pair for
block and tag as the proof of the challenged one, which
may has been tampered or discarded. A secure RDPC
protocol should be able to resist all the attacks above,
which guarantees that anyone who can construct valid
proof passing the verification should actually possess the
entire file. we use a data possession checking game to
captures the data possession property which covers all the
three attacks. The game which involves challenger served
as data owner and an adversary served as untrusted CSS is
shown as follows: Setup. executes KeyGen algorithm to
get the homomorphic key K and private key sk . Both of
them are kept secretly by Query. can make two types of
queries with Tag query. adaptively chooses amount of data
blocks and sends them to for querying the tags. executes
theTagGen algorithm to obtain a valid tag of each block
and returns all the tags to Proof verificatio n query.
generates data possession proofs for the blocks whose tags
have been queried and submits the proofs to executes the
Verify algorithm to check the validation for the proofs and
returns the results to These queries can be repeated
polynomial times. Challenge. submits challenge chal to and
requires to reply data possession proof P of the challenged
blocks. Forge. computes a proof P and returns it to wins the
game if P is a correct proof. Definition 1. A RDPC scheme
is secure if any probabilistic polynomial-time (PPT)
adversary can win the data possession game on a set of
blocks with non-negligible advantage, there exists a
knowledge extractor which can extract the challenged
blocks with non-negligible probability. is comparable to
that of verifying one signature and is increased only
gradually when the batch size n is increased.

5. DYNAMIC RDPC SCHEME
In real applications, outsourced data file is dynamic. This
inspires us to construct dynamic RDPC schemes with
various data block operations. In this paper, we use ORT
table as the auxiliary tool to support data dynamic
operations. The similar idea has been adopted by To
upgrade our static scheme described in the sub-section
III.A to be a fully dynamic scheme, we have to do another
two works. Firstly, we need to make slight modification
on the algorithm TagGen of the static scheme.
Secondly, we should implement the algorithms
ExecUpdate and PrepareUpdate , which are the core
functions for data dynamics. Then, we will present these
two works respectively. Modificatio n on TagGen . In the
new TagGen algorithm, besides doing all the works in
static scheme, the data owner has to initialize the ORT
table and store the information for all the blocks to the
ORT. As shown in Fig, in initialization phase all the BP
values are the real indexes of blocks with ascending order,

Research script | IJRCS
Volume: 05 Issue: 02 2018 © Researchscript.com 19

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

the BI values are the same as BP , and the values of BV are
initialized to 1. Simultaneously, to enhance the security
of the dynamic RDPC protocol, i is updated to where
BIi and BVi denote the BI value and the BV value of the
block Fi .
PrepareUpdate(Fi ',i,UT)->URI . This algorithm is
responsible for preparing the pre-works for dynamic
operations. The data owner is able to execute three types of
operations on his outsourced file, namely 'insert', 'delete'
and 'modify'. The pre-works for the three dynamic
operations will be finished by the same algorithm
PrepareUpdate with different parameters. The three
different situations are described as follows.
PrepareUpdate(Fi ',i,insert)-
>URI . For the 'insert' operation, the value of the
parameter UT is set to be 'insert'. The parameter Fi '
denotes the new block to be inserted, and i is the position
where the new block will be inserted. The data owner first
inserts a new row after the (i 1)-th row in ORT, and sets
the values of the new entry to (i, Max{BI}1,1) , where
Max{BI} means the max value of all BI in ORT. At the
same time, all the entries in the original ORT from the i –
th to the end move backward in order, with the all BP value
The Fi ' denotes the new version for data block to be
updated, i is the position of the block. The data owner
replaces the version number VI by BVi
-> in the i -th row of ORT and calls the algorithm TagGen
to re- calculate the tag Ti ' for the new block Fi ' . Then the
data owner submits the request URI->(Fi,,ri,modify) to the
CSS. PrepareUpdate(null,i,delete)URI . For deleting
blocks, the value of the parameter UT is set to be 'delete'.
The data owner just needs to delete the i -th row in ORT
and move forward the entries from the (i 1)-th row to the
tail in order. The corresponding BP values of the moved
entries decrease 1 while the BI and BV remain unchanged.
After that, the d0ataowner sends the request
URI ->(null,null,i,delete) to the CSS.
ExecUpdate(URI)->{Success,Fail}. When the CSS
receives the update request URI from the data owner, it
updates the file blocks and tags according to the value of
URI . For the case of
'insert', the CSS inserts the new block Fi ' to the file and
the new tag Ti ' to the tag list, which are both at the i
position; For the case of 'modify', the CSS replaces the
old version of the block and tag at the position i with the
new input pair (Fi ',Ti ') ; and for the case of 'delete', CSS
only needs to delete the block and tag pair at the position i .
When finishing the work rightly, the CSS restatement
When finishing the work rightly, the CSS returns
Success to the data owner, otherwise returns Fail . For
the case of ‘insert', the CSS inserts the new block Fi ' to
the file and the new tag Ti ' to the tag list, which are both
at the i position;
For the case of 'modify', the result

5.1OPTIMIZED IMPLEMENTATION OF ORT
It reveals the changing process of the ORT for different
types of dynamic operations. Obviously, ORT is a linear
data structure. So array and linked list are two traditional
means for implementing ORT . However, using array has
advantage over the element location but brings great costs
on ‘insert' and 'modify' operations, which have to copy and
move all the elements behind the insert or modify index.
Using linked list to realize ORT will remove the cost
element coping and moving and just needs to move node
pointers which spends nearly negligible cost. But it
increases

massive overhead on nodes location for retrieving,
inserting and modifying elements especially when the
data size is big. Thus, to get better accessing efficiency,
we present a novel hybrid data structure for realizing ORT,
which is composed of array and doubly linked list. We

Research script | IJRCS
Volume: 05 Issue: 02 2018 © Researchscript.com 20

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

integrate the array's merit to narrow the range of . But it
increases massive overhead on nodes location for
retrieving, inserting and modifying elements especially
when the data size is big. Thus, to get better accessing
efficie ncy, we present a novel hybrid data structure for
realizing ORT, which is composed of array and doubly
linked list. We integra te the array's merit to narrow the
range of values.entries of ORT to be nodes of the list with
the same order. Since the doubly linked list is an ordered
linear structure which implicitly contains the BP values of
the nodes, each node only needs to store the BI and BV
values. And then we split the entire doubly linked list into a
number of sub-lists with constant length and create a
pointer array to store the head node of each sub-list.
Suppose the count of all nodes is N
, the length for the sub-list is L , the size for the pointer
array is W
, then it has⌈ N L ⌉.Locate position. When locating the
node at position V , we first compute the index W ' of the
sub-list which
the node belongs to by the equation W ' ⌊ (V 1) L⌋, and
then move
the node pointer backward by (V W ' L 1) times from the
head node.
Compared with linked list, we can use the hybrid data
structure to reduce the average location cost on pointer
movement from N 2 to L 2 .Support operations. Upon
fixing the operation position, we can insert or delete node
easily which only need to move pointers for four times.
Reconstruct. After inserting or deleting nodes, the length
of the doubly linked list will change. In order to keep the
constant length of the sub-lists, it requires to reset the head
node of the sub-lists behind the operation position. Thus,
along with the overhead on locating, the average costs on
inserting and deleting node is (W L) 2, which is very small
compared with linked list.Fig.4 demonstrates the detailed
process for dynamic operations on the hybrid data
structure, in which PA denotes the pointer array, each node
contains the values of BI and Jointed by '& ' and the length
of the sub-list is set to 100.

6. CONCLUSION
In this paper, we study the issue for integrity checking of
data files outsourced to remote server and propose an
efficient secure RDPC protocol with data dynamic. Our
scheme employs a homomorphic hash function to verify
the integrity for the files stored on remote server, and
reduces the storage costs and computation costs of
the data owner. We design a new lightweight hybrid
data structure to support dynamic operations on blocks
which incurs minimum computation
costs by decreasing the number of node shifting.
Using our new data structure, the data owner can perform
insert, modify or delete operation on file blocks with
high efficiency. The presented scheme is proved
secure in existing security model. We evaluate the
performance in term of community cost,
computation cost and storage cost. The experiments
results indicate that our scheme is practical in
cloud storage.

REFERENCES

[1] Venugopal, J. Broberg, and I. Brandic,“Cloudcomputing and
emerging IT platforms: Vision, hype, and reality fordelivering
computing as the 5th utility,” Future Gener. Comp. Sy., vol.2 5,
no. 6, pp. 599 – 616, 2009.

[2] H. Qian, J. Li, Y. Zhang and J. Han, “Privacy preserving
personal healthrecord using multi-authority attribute-based
encryption withrevocation,” Int. J. Inf. Secur., vol. 14, no. 6, pp.
487-497, 2015.

[3] J. Li, W. Yao, Y. Zhang, H. Qian and J. Han, “Flexible and fine-
grained attribute-based data storage in cloud computing,” IEEE
Trans. Service Comput., DOI: 10.1109/TSC.2016.2520932.

[4] J. Li, X. Lin, Y. Zhang and J. Han, “KSF-OABE: outsourced
attribute-based encryption with keyword search function for
cloud storage,” IEEE Trans. Service Comput., DOI:
10.1109/TSC.2016. 2542813.

[5] J. Li, Y. Shi and Y. Zhang, “Searchable ciphertext-policy
attribute-based encryption with revocation in cloud storage,” Int.
J. Commun. Syst., DOI: 10.1002/dac.2942.

[6] J.G. Han, W. Susilo, Y. Mu and J. Yan, “Privacy-Preserving
Decentralized DKiesytr-iPboultiecdy SAystttreimbust,e v-Bola.
s2e3d, nEon.1c1ry, pptpio. n2,1”5 0IE-2E1E62 ,T 2r0an1s2

Research script | IJRCS
Volume: 05 Issue: 02 2018 © Researchscript.com 21

	1. Introduction
	2. RELATED WORKS
	3. OUTLINE OF OUR RDPC PROTOCOL
	4. SECURITY REQUIREMENT
	5. DYNAMIC RDPC SCHEME
	6. CONCLUSION

