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Abstract— In modern VLSI design power has been become a burning issue. Reducing power consumption in design it enables better 
and cheaper products to be designed and power-related chip failures to be minimized. The power consumed by clocking gradually takes 
a dominant part. Multi-bit flip-flop is an effective method for clock power consumption reduction. The underlying idea behind multi-bit 
flip-flop method is to eliminate the total inverter number by sharing the inverters in the flip-flops. To deal with the difficulty efficiently, 
we have proposed several techniques. First, we perform a co-ordinate transformation to identify those flip-flops that can be merged and 
their legal regions. Besides, we show how to build a combination table to enumerate possible combinations of flip-flops provided by a 
library. Finally, we use a hierarchical way to merge flip-flops. The time complexity of our algorithm is (n1.12) less than the empirical 
complexity of (n2).Our algorithm significantly reduces clock power by 20–30% and the running time is very short. In the largest test 
case, which contains 1 700 000 flip-flops, our algorithm only takes about 5 min to replace flip-flops and the power reduction can achieve 
21%. 
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1.  INTRODUCTION  
The main objective of this circuit to implement on low 

power VLSI, to design a multi-bit flip-flop using shared 
inverters concepts. This facilitates a reduces wire-length 
and reduces the power. 

2. OVERVIEW 
     Due to the popularity of portable electronic products, 
low power system has attracted more attention in recent 
years. As technology advances, systems-on-a-chip (SoC) 
design can contain more and more components that lead to 
a higher power density. Reducing the power consumption 
not only can enhance battery life but also can avoid the 
overheating problem, which would increase the difficulty 
of packaging or cooling. Therefore, the consideration of 
power consumption in complex SOCs has become a big 
challenge to designers. Moreover, in modern VLSI designs, 
power consumed by clocking has taken a major part of the 
whole design especially for those designs using deeply 
scaled CMOS technologies. Thus, several methodologies, 
have been proposed to reduce the power consumption of 
clocking. 

Given a design that the locations of the cells have 
been determined, the power consumed by clocking can be 
reduced further by replacing several flip-flops with multi-
bit flip-flops. During clock tree synthesis, less number of 
flip-flops means less number of clock sinks. Thus, the 
resulting clock network would have smaller power 
consumption and uses less routing resource. Besides, once 
more smaller flip-flops are replaced by larger multi-bit flip-
flops; device variations in the corresponding circuit can be 
effectively reduced. As CMOS technology progresses, the 
driving capability of an inverter-based clock buffer 
increases significantly. The driving capability of a clock 
buffer can be evaluated by the number of minimum-sized 
inverters that it can drive on a given rising or falling time. 
Because of this phenomenon, several flip-flops can share a 

common clock buffer to avoid unnecessary power waste. 
 

The total power consumption can be reduced 
because the two 1-bit flip-flops can share the same clock 
buffer. However, the locations of some flip-flops would be 
changed after this replacement, and thus the wire-lengths of 
nets connecting pins to a flip-flop are also changed. To 
avoid violating the timing constraints, we restrict that the 
wire-lengths of nets connecting pins to a flip-flop cannot 
be longer than specified values after this process. Besides, 
to guarantee that a new flip-flop can be placed within the 
desired region, we also need to consider the area capacity 
of the region. 

The problem of using multi-bit flip-flops to reduce 
power consumption in the post-placement stage. They use 
the graph-based approach to deal with this problem. In a 
graph, each node represents a flip-flop. If two flip-flops can 
be replaced by a new flip-flop without violating timing and 
capacity constraints, they build an edge between the 
corresponding nodes. After the graph is built, the problem 
of replacement of flip-flops can be solved by finding an m-
clique in the graph. The flip-flops corresponding to the 
nodes in an m-clique can be replaced by an m-bit flip-flop. 
They use the branch-and-bound and backtracking 
algorithm to find all m-cliques in a graph. Because one 
node (flip-flop) may belong to several m-cliques (m-bit 
flip-flop), they use greedy heuristic algorithm to find the 
maximum independent set of cliques, which every node 
only belongs to one clique, while finding m-cliques groups. 
However, if some nodes correspond to k-bit flip-flops that 
k _ 1, the bit width summation of flip-flops corresponding 
to nodes in an m-clique, j ,may not equal m. If the type of a 
j -bit flip-flop is not supported by the library,it may be 
time-wasting in finding impossible combinations of flip-
flops. 

To deal with this problem, the direct way is to 
repeatedly search a set of flip-flops that can be replaced by 
a new multi-bit flip-flop until none can be done. However, 
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as the number of flip-flops in a chip increases dramatically, 
the complexity would increase exponentially, which makes 
the method impractical. To handle this problem more 
efficiently and get better results, we have used the 
following approaches. 

 
• To facilitate the identification of mergeable flip-

flops, we transform the coordinate system of cells. 
In this way, the memory used to record the 
feasible placement region can also be reduced. 

 
• To avoid wasting time in finding impossible 

combinations of flip-flops, we first build a 
combination table before actually merging two 
flip-flops. For example, if a library only provides 
three kinds of flip-flops, which are 1-, 2-, and 3-
bit, we first separate the flip-flops into three 
groups. Therefore, the combination of 1- and 3-bit 
flip-flops is not considered since the library does 
not provide the type of 4-bit flip-flop. 

 
• We partition a chip into several sub regions and 

perform replacement in each sub region to reduce 
the complexity. However, this method may 
degrade the solution quality. To resolve the 
problem, we also use a hierarchical way to 
enhance the result. 

3. MODIFIED SINGLE-BIT FLIP-FLOPS 

A. INTRODUCTION 
        Cell library L and a placement which contains a lot of 
flip-flops, target is to merge as many flip-flops as possible 
in order to reduce the total power consumption. If we want 
to replace some flip-flops f1,..., f j−1 by a new flip-flop f j , 
the bit width of f j must be equal to the summation of bit 
widths in the original ones (i.e., ∑bi = b j , i = 1 to j−1). 
Besides, since the replacement would change the routing 
length of the nets that connect to a flip- flop, it inevitably 
changes timing of some paths. Finally, to ensure that a 
legalized placement can be obtained after the replacement, 
there should exist enough space in each bin. To consider 
these issues, define two constraints as follows. 

 
• Timing Constraint for a Net Connecting to a Flip-

Flop f j from a Pin pi : To avoid that timing is 
affected after the replacement, the Manhattan 
distance between pi and f j cannot be longer than 
the given constraint S(pi ) defined on the pin pi 
[i.e., M(pi , f j ) ≤ S(pi )].Based on each timing 
constraint defined on a pin, we can find a feasible 
placement region for a flip-flop fj . See Fig.6.1for 
example. Assume pins p1 and p2 connect to a 1-
bit flip-flop f1. Because the length is measured by 
Manhattan distance, the feasible placement region 
of f1 constrained by the pin pi [i.e., M(pi , f1) ≤ 
S(pi )] would form a diamond region, which is 
denoted by Rp(pi ), i = 1 or 2. See the region 
enclosed by dotted lines in the figure. Thus, the 
legal placement region of f1 would be the 
overlapping region enclosed by solid lines, which 
is denoted by R( f1). R( f1) is the overlap region of 

Rp(p1) and Rp(p2).  
 

 
Figure.3.1. Defined slack region of the pin 

Capacity Constraint for Each Bin Bk : The total area of 
flip-flops intended to be placed into the bin Bk cannot be 
larger than the remaining area of the bin Bk (i.e.,  

∑A( fi ) ≤ RA(Bk)). 

4. PROPOSED ARCHITECTURE 

A. DESIGN FLOW 
          Our design flow can be roughly divided into three 
stages. we have to identify a legal placement region for 
each flip-flop fi First, the feasible placement region of a 
flip-flop associated with different pins are found based on 
the timing constraints defined on the pins. Then, the legal 
placement region of the flip-flop fi can be obtained by the 
overlapped area of these regions. However, because these 
regions are in the diamond shape, it is not easy to identify 
the overlapped area. Therefore, the overlapped area can be 
identified more easily if we can transform the coordinate 
system of cells to get rectangular regions. In the second 
stage, we would like to build a combination table, which 
defines all possible combinations of flip-flops in order to 
get a new multi-bit flip-flop provided by the library. The 
flip-flops can be merged with the help of the table. After 
the legal placement regions of flip-flops are found and the 
combination table is built, we can use them to merge flip-
flops. To speed up our program, we will divide a chip into 
several bins and merge flip-flops in a local bin. However, 
the flip-flops in different bins may be mergeable. Thus, we 
have to combine several bins into a larger bin and repeat 
this step until no flip-flop can be merged anymore. In this 
section, we would detail each stage of our method. In the 
first subsection, we show a simple formula to transform the 
original coordination system into a new one so that a legal 
placement region for each flip-flop can be identified more 
easily. The second subsection presents the flow of building 
the combination table. Finally, the replacements of flip-
flops will be described in the last subsection. 

 
Figure: 4.1 Flow chart of our algorithm 
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B. TRANSFORMATION OF PLACEMENT SPACE 
          Since there may exist several pins connecting to f i , 
the legal placement region of f i are the overlapping area 
of several regions. As shown in Fig.7.1.1(a), there are two 
pins p1 and p2 connecting to a flip-flop f1, and the feasible 
placement regions for the two pins are enclosed by dotted 
lines, which are denoted by Rp(p1) and Rp(p2), 
respectively. Thus, the legal placement region R( f1) for f1 
is the overlapping part of these regions. In Fig. 7.1.1(b), R( 
f1) and R( f2) represent the legal placement regions of f1 
and f2. Because R( f1) and R( f2) overlap, we can replace 
f1 and f2 by a new flip-flop f3 without violating the timing 
constraint, as shown in Fig. 7.1.1(c). However, it is not 
easy to identify and record feasible placement regions if 
their shapes are diamond. Moreover, four coordinates are 
required to record an overlapping region [see Fig. 
7.1.2(a)]. Thus, if we can rotate each segment 45°, the 
shapes of all regions would become where W( f1) and H( 
f1) [W( f2) and H( f2)] denote the width and height of R( 
f1) [R( f2)], respectively, in Fig.7.1.3 and the function 
DIS_X( f1, f2) and (DIS_Y( f1, f2)) calculates the distance 
between centers of R( f1) and R( f2) in x-direction (y-
direction). 

 
Figure 4.1. (a) Feasible regionsRp (p1) and Rp(p2) for pins p1 and p2 
which are enclosed by dotted lines, and the legal region R( f1) for f1 

which is enclosed by solid lines. (b) Legal placement regions R( f1) and 
R( f2) for f1 and f2, and the feasible area R3 which is the overlap region 

of R( f1) and R( f2). 
(c) New flip-flop f3 that can be used to replace f1 and f2 without violating 

timing constraints for all pins p1, p2, p3, and p4. 

 
Figure 4.2 (a) Overlapping region of two diamond shapes. (b) 

Rectangular shapes obtained by rotating the diamond shapes in (a) by45°. 

 
Figure 4.3 Overlapping relation between available placement regions of f 

1and f 2. 
 
 

C. BUILD A COMBINATION TABLE 
           If we want to replace several flip-flops by a new 
flip-flop fi’(note that the bit width of f’i should equal to 
the summation of bit widths of these flip-flops), we have 
to make sure that the new flip-flop fi’ is provided by the 
library L when the feasible regions of these flip-flops 
overlap. Build a combination table, which records all 
possible combinations of flip-flops to get feasible flip-
flops before replacements. Thus, we can gradually replace 
flip-flops according to the order of the combinations of 
flip-flops in this table. Since only one combination of flip-
flops needs to be considered in each time, the search time 
can be reduced greatly. We use a binary tree to represent 
one combination for simplicity. Each node in the tree 
denotes one type of a flip-flop in L. The types of flip-flops 
denoted by leaves will constitute the type of the flip-flop 
in the root. For each node, the bit width of the 
corresponding flip-flop equals to the bit width summation 
of flip-flops denoted by its left and right child [please see 
Fig. 7.1.4(e) for example]. 
 
In order to use a binary tree to denote a combination 
whose bit width is 4, there must exist flip-flops whose bit 
widths are 2 and 3 in L . If the combination is not included 
into any other combinations, it will be deleted. For 
example, suppose a library L only provides two types of 
flip-flops, whose bit widths are 1 and 4 (i.e., bmin = 1 and 
bmax = 4), in Fig. 9(a). We first initialize two 
combinations n1 and n2 to represent these two types of 
flip-flops in the table T [see Fig. 7.1.4(a)]. Thus, two kinds 
of flip-flop types whose bit widths are 2 and 3 are added 
into L, and all types of flip-flops in L are sorted according 
to their bit widths [see Fig. 7.1.4(b)]. Now, for each 
combination in T, we would build a binary tree with 0-
level, and the root of the binary tree denotes the 
combination. Next, we try to build new legal combinations 
according to the present combinations. By combing two 1-
bit flip-flops in the first combination, a new combination 
n3 can be obtained [see Fig. 7.1.4(c)]. Similarly, we can 
get a new combination n4 (n5) by combining n1 and 
n3(two n3’s) [see Fig. 7.1.4(d)]. Finally, n6 is obtained by 
combing n1 and n4. All possible combinations of flip-flops 
are shown in Fig. 9(e). Among these combinations, n5 and 
n6 are duplicated since they both represent the same 
condition, which replaces four 1-bit flip-flops by a 4-bit 
flip-flop. To speed up our program, n6 is deleted from T 
rather than n5 because its height is larger. After this 
procedure, n4 becomes an unused combination [see Fig. 
7.1.4(e)] since the root of binary tree of n4 corresponds to 
the pseudo type, type3, in L and it is only included in n6. 
After deleting n6, n4 is also need to be deleted. The last 
combination table T is shown in Fig. 7.1.4(f) 

 
(a) 
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(b) 

 

 
(c) 

 
(d) 

 
(e) 

Figure 4.4. Example of building the combination table. (a) Initialize the 
library 

L and the combination table T . (b) 
Pseudo types are added into L, and the corresponding binary tree is also 

build for each combination in T. (c) New combination n3 is obtained 
from combining two n1s. (d) New combination n4 is obtained from 

combining n1 and n3, and the combination n5 is obtained from 
combining two n3s.(e) Last combination table is obtained after deleting 

the unused combination 

D. MERGE FLIP-FLOPS 
             Now, show how to use the combination table to 
combine flip-flops in this subsection. To reduce the 
complexity, we first divide the whole placement region 
into several sub-regions, and use the combination table to 
replace flip-flops in each sub-region. Then, several sub-
regions are combined into a larger sub-region and the flip-
flops are replaced again so that those flip-flops in the 
neighboring sub-regions can be replaced further. Finally, 
those flip-flops with pseudo types are deleted in the last 
stage because they are not provided by the supported 
library. Fig.4.5 shows this flow. 

 
Figure.4.5 Region partition with six bins in one region 

• Region partition (optional): To Speed up our problem 
,we divide the whole chip into several sub – regions .By 
suitable partition , the computation complexity of merging 
flip flops can be reduced significantly. 
• Replacement of flip flops in each sub-region: 
corresponding to their types in the merge flip-, we first 
give an equation to cost = routing length– α   x (available 
_area) ^1/2 Where routing _ length denoted the total 
routing length between the new flip flop and the pins 
connected to it, and available _area represents the 
available area in the feasible region for placing the new 
flip flop as is a weighting factor. The cost function 
includes the term routing length to favor a replacement 
that induces shorter wavelength. Besides, if the region has 
larger available space to place a new flip-flop, it implies 
that it has higher opportunities to combine with other flip-
flops in future and more power reduction. Thus, we will 
give it a smaller cost. Once the flip flop cannot be merged 
to a higher –bit type we ignore the available _area in the 
cost function, and hence are set to 0.After combination 
table. First, we link flip flops below the combinations 
measure library. Then, quality factor for each if two 
combination flip-flops as linked the left child and right 
child of the root. For example, given a library containing 
three types of flip-flops(1-,2-, and 4-bit), we first build a 
combination table T as shown in fig7.16(a). In the 
beginning, the flip-flops with various types are, 
respectively, linked below n1, n2, and n3 in T according to 
their types. Suppose we want to form a flip-flop in n4, 
which needs two 1-bit flip-flops according to the 
combination table. Each pair of flip-flops in n1 are 
selected and checked to see if they can be combined. If 
there are several possible choices, the pair with the 
smallest cost value is chosen to break the tie. In 
Fig.7.1.6(a), f1 and f2 are chosen because their 
combination gains the smallest cost. Thus, we add a new 
node f3 in the list below n4, and then delete f1 and f2 from 
their original list [see Fig. 7.1.6(b)]. Similarly, f4 and f5 
are combined to obtain a new flip-flop f6, and the result is 
shown in Fig.7.1.6(c). After all flip-flops in the 
combinations of 1-level trees (n4 and n5) are obtained as 
shown in Fig.7.1.6(d), we start to form the flip-flops in the 
combinations of 2-level trees (n6, and n7). In Fig.7.1.6(e), 
there exist some flip-flops in the lists below n2 and n4, and 
merge them to get flip-flops in n6 and n7, respectively. 
Suppose there is no overlap region between the couple of 
flip-flops in n2 and n4. It fails to form a 4-bit flip-flop in 
n6. Since the 2-bit flip-flops f3 and f6 are mergeable, we 
can combine them to obtain a 4-bit flip-flop f10 in n7. 
Finally, because there exists no couple of flip-flops that 
can be combined further, the procedure finishes as shown 
in Fig.7.1.6(f). If the available overlap region of two flip-
flops exists, assign a new one to replace those flip-flops. 

Research script | IJRE 
Volume: 05 Issue: 04 2018                                            © Researchscript.com                                                                 7 

 



                  IJRE - International Journal of Research in Electronics                           ISSN: 2349-252X        

 

 
Figure46. Example of replacements of flip-flops. (a) Sets of flip-flops 

before merging. (b) Two 1-bit flip-flops, f1 and f2, are replaced by the 2-
bit flip-flopf3. (c) Two 1-bit flip-flops, f4 and f5, are replaced by the 2-bit 
flip-flop f6. (d) Two 2-bit flip-flops, f7 and f8, are replaced by the 4-bit 
flip-flop f9. (e) Two 2-bit flip-flops, f3 and f6, are replaced by the 4-bit 

flip-flop f10.(f)Sets of flip-flops after merging 

5. RESULTS 

A. POWER ANALYSIS: COMPARISON TABLE 
        The table shows the various test circuits and 
experimental results. Case 5 is the largest circuit of about 1 
700 000 flip-flops. Because the execution time is 
dominated by the number of flip-flops in the circuit, Case 
5 is applied to help to demonstrate the efficiency and 
robust of our algorithm. Row 1 in the table lists all test 
cases and row 2 shows types of different flip-flops that can 
be used in each test case. Rows 3 and 4 respectively, show 
numbers of flip-flops and total power consumption in 
original test cases. After some flip-flops are replaced by 
our algorithm, the power consumption of each design is 
shown in row 5, and row 6 computes the ratio of power 
reduction by our algorithm, which is denoted by PR_ 
Ratio. From rows 7 to 9, it shows the wire-length 
reduction by our algorithm. Rows 7 and 8 show the 
original wire-length and the wire-length after our program 
is applied. Finally, the ratio of wire-length reduction, 
which is denoted by WR_Ratio, is shown in row 9.The 
values of PR_ Ratio in all cases are between 20 and 30. 
Besides, the wire-length are less than the original circuit in 
all cases, and the best value of WR_Ratio can achieve 
42.18% improvement. Row 10 shows the execution time 
of each case. Because of the long execution time of parser, 
show the execution time of parser in row 11. 

6. CONCLUSION 
    This paper has proposed for flip-flop replacement for 
power reduction in digital integrated circuit design. The 
procedure of flip-flop replacements is depending on the 
combination table, which records the relationships among 
the flip-flop types. The concept of pseudo type is 

introduced to help to enumerate all possible combinations 
in the combination table. By the guidelines of 
replacements from the combination table, the impossible 
combinations of flip-flops will not be considered that 
decreases execution time. Besides power reduction, the 
objective of minimizing the total wire length also be 
considered to the cost function. The experimental results 
show that our algorithm can achieve a balance between 
power reduction and wire length reduction. Moreover, 
even for the largest case which contains about 1 700 000 
flip-flops, our algorithm can maintain the performance of 
power and wire length reduction in the reasonable 
processing time. 
TABLE I. POWER ANALYSIS: COMPARISON TABLE 
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