
 IJRE - International Journal of Research in Electronics ISSN: 2349-252X

CLOCK POWER MITIGATION OF MULTI-BIT
FLIP-FLOPS USING MERGING TECHNIQUE

T.Bhuvaneswari1 | C.Prema2
1(Dept of ECE, Assistant Professor, KGiSL Institute of Technology, bhuvaneswari3008@gmail.com)

 2(Dept of ECE, Assistant Professor, KGiSL Institute of Technology, c.prema@kgkite.ac.in)

Abstract— In modern VLSI design power has been become a burning issue. Reducing power consumption in design it enables better
and cheaper products to be designed and power-related chip failures to be minimized. The power consumed by clocking gradually takes
a dominant part. Multi-bit flip-flop is an effective method for clock power consumption reduction. The underlying idea behind multi-bit
flip-flop method is to eliminate the total inverter number by sharing the inverters in the flip-flops. To deal with the difficulty efficiently,
we have proposed several techniques. First, we perform a co-ordinate transformation to identify those flip-flops that can be merged and
their legal regions. Besides, we show how to build a combination table to enumerate possible combinations of flip-flops provided by a
library. Finally, we use a hierarchical way to merge flip-flops. The time complexity of our algorithm is (n1.12) less than the empirical
complexity of (n2).Our algorithm significantly reduces clock power by 20–30% and the running time is very short. In the largest test
case, which contains 1 700 000 flip-flops, our algorithm only takes about 5 min to replace flip-flops and the power reduction can achieve
21%.

Keywords— VLSI; CMOS; SOC
__

1. INTRODUCTION
The main objective of this circuit to implement on low

power VLSI, to design a multi-bit flip-flop using shared
inverters concepts. This facilitates a reduces wire-length
and reduces the power.

2. OVERVIEW
 Due to the popularity of portable electronic products,
low power system has attracted more attention in recent
years. As technology advances, systems-on-a-chip (SoC)
design can contain more and more components that lead to
a higher power density. Reducing the power consumption
not only can enhance battery life but also can avoid the
overheating problem, which would increase the difficulty
of packaging or cooling. Therefore, the consideration of
power consumption in complex SOCs has become a big
challenge to designers. Moreover, in modern VLSI designs,
power consumed by clocking has taken a major part of the
whole design especially for those designs using deeply
scaled CMOS technologies. Thus, several methodologies,
have been proposed to reduce the power consumption of
clocking.

Given a design that the locations of the cells have
been determined, the power consumed by clocking can be
reduced further by replacing several flip-flops with multi-
bit flip-flops. During clock tree synthesis, less number of
flip-flops means less number of clock sinks. Thus, the
resulting clock network would have smaller power
consumption and uses less routing resource. Besides, once
more smaller flip-flops are replaced by larger multi-bit flip-
flops; device variations in the corresponding circuit can be
effectively reduced. As CMOS technology progresses, the
driving capability of an inverter-based clock buffer
increases significantly. The driving capability of a clock
buffer can be evaluated by the number of minimum-sized
inverters that it can drive on a given rising or falling time.
Because of this phenomenon, several flip-flops can share a

common clock buffer to avoid unnecessary power waste.

The total power consumption can be reduced
because the two 1-bit flip-flops can share the same clock
buffer. However, the locations of some flip-flops would be
changed after this replacement, and thus the wire-lengths of
nets connecting pins to a flip-flop are also changed. To
avoid violating the timing constraints, we restrict that the
wire-lengths of nets connecting pins to a flip-flop cannot
be longer than specified values after this process. Besides,
to guarantee that a new flip-flop can be placed within the
desired region, we also need to consider the area capacity
of the region.

The problem of using multi-bit flip-flops to reduce
power consumption in the post-placement stage. They use
the graph-based approach to deal with this problem. In a
graph, each node represents a flip-flop. If two flip-flops can
be replaced by a new flip-flop without violating timing and
capacity constraints, they build an edge between the
corresponding nodes. After the graph is built, the problem
of replacement of flip-flops can be solved by finding an m-
clique in the graph. The flip-flops corresponding to the
nodes in an m-clique can be replaced by an m-bit flip-flop.
They use the branch-and-bound and backtracking
algorithm to find all m-cliques in a graph. Because one
node (flip-flop) may belong to several m-cliques (m-bit
flip-flop), they use greedy heuristic algorithm to find the
maximum independent set of cliques, which every node
only belongs to one clique, while finding m-cliques groups.
However, if some nodes correspond to k-bit flip-flops that
k _ 1, the bit width summation of flip-flops corresponding
to nodes in an m-clique, j ,may not equal m. If the type of a
j -bit flip-flop is not supported by the library,it may be
time-wasting in finding impossible combinations of flip-
flops.

To deal with this problem, the direct way is to
repeatedly search a set of flip-flops that can be replaced by
a new multi-bit flip-flop until none can be done. However,

IJRE - International Journal of Research in Electronics
Volume: 05 Issue: 04 2018 www.researchscript.com 4

 IJRE - International Journal of Research in Electronics ISSN: 2349-252X

as the number of flip-flops in a chip increases dramatically,
the complexity would increase exponentially, which makes
the method impractical. To handle this problem more
efficiently and get better results, we have used the
following approaches.

• To facilitate the identification of mergeable flip-

flops, we transform the coordinate system of cells.
In this way, the memory used to record the
feasible placement region can also be reduced.

• To avoid wasting time in finding impossible

combinations of flip-flops, we first build a
combination table before actually merging two
flip-flops. For example, if a library only provides
three kinds of flip-flops, which are 1-, 2-, and 3-
bit, we first separate the flip-flops into three
groups. Therefore, the combination of 1- and 3-bit
flip-flops is not considered since the library does
not provide the type of 4-bit flip-flop.

• We partition a chip into several sub regions and

perform replacement in each sub region to reduce
the complexity. However, this method may
degrade the solution quality. To resolve the
problem, we also use a hierarchical way to
enhance the result.

3. MODIFIED SINGLE-BIT FLIP-FLOPS

A. INTRODUCTION
 Cell library L and a placement which contains a lot of
flip-flops, target is to merge as many flip-flops as possible
in order to reduce the total power consumption. If we want
to replace some flip-flops f1,..., f j−1 by a new flip-flop f j ,
the bit width of f j must be equal to the summation of bit
widths in the original ones (i.e., ∑bi = b j , i = 1 to j−1).
Besides, since the replacement would change the routing
length of the nets that connect to a flip- flop, it inevitably
changes timing of some paths. Finally, to ensure that a
legalized placement can be obtained after the replacement,
there should exist enough space in each bin. To consider
these issues, define two constraints as follows.

• Timing Constraint for a Net Connecting to a Flip-

Flop f j from a Pin pi : To avoid that timing is
affected after the replacement, the Manhattan
distance between pi and f j cannot be longer than
the given constraint S(pi) defined on the pin pi
[i.e., M(pi , f j) ≤ S(pi)].Based on each timing
constraint defined on a pin, we can find a feasible
placement region for a flip-flop fj . See Fig.6.1for
example. Assume pins p1 and p2 connect to a 1-
bit flip-flop f1. Because the length is measured by
Manhattan distance, the feasible placement region
of f1 constrained by the pin pi [i.e., M(pi , f1) ≤
S(pi)] would form a diamond region, which is
denoted by Rp(pi), i = 1 or 2. See the region
enclosed by dotted lines in the figure. Thus, the
legal placement region of f1 would be the
overlapping region enclosed by solid lines, which
is denoted by R(f1). R(f1) is the overlap region of

Rp(p1) and Rp(p2).

Figure.3.1. Defined slack region of the pin

Capacity Constraint for Each Bin Bk : The total area of
flip-flops intended to be placed into the bin Bk cannot be
larger than the remaining area of the bin Bk (i.e.,

∑A(fi) ≤ RA(Bk)).

4. PROPOSED ARCHITECTURE

A. DESIGN FLOW
 Our design flow can be roughly divided into three
stages. we have to identify a legal placement region for
each flip-flop fi First, the feasible placement region of a
flip-flop associated with different pins are found based on
the timing constraints defined on the pins. Then, the legal
placement region of the flip-flop fi can be obtained by the
overlapped area of these regions. However, because these
regions are in the diamond shape, it is not easy to identify
the overlapped area. Therefore, the overlapped area can be
identified more easily if we can transform the coordinate
system of cells to get rectangular regions. In the second
stage, we would like to build a combination table, which
defines all possible combinations of flip-flops in order to
get a new multi-bit flip-flop provided by the library. The
flip-flops can be merged with the help of the table. After
the legal placement regions of flip-flops are found and the
combination table is built, we can use them to merge flip-
flops. To speed up our program, we will divide a chip into
several bins and merge flip-flops in a local bin. However,
the flip-flops in different bins may be mergeable. Thus, we
have to combine several bins into a larger bin and repeat
this step until no flip-flop can be merged anymore. In this
section, we would detail each stage of our method. In the
first subsection, we show a simple formula to transform the
original coordination system into a new one so that a legal
placement region for each flip-flop can be identified more
easily. The second subsection presents the flow of building
the combination table. Finally, the replacements of flip-
flops will be described in the last subsection.

Figure: 4.1 Flow chart of our algorithm

Research script | IJRE
Volume: 05 Issue: 04 2018 © Researchscript.com 5

 IJRE - International Journal of Research in Electronics ISSN: 2349-252X

B. TRANSFORMATION OF PLACEMENT SPACE
 Since there may exist several pins connecting to f i ,
the legal placement region of f i are the overlapping area
of several regions. As shown in Fig.7.1.1(a), there are two
pins p1 and p2 connecting to a flip-flop f1, and the feasible
placement regions for the two pins are enclosed by dotted
lines, which are denoted by Rp(p1) and Rp(p2),
respectively. Thus, the legal placement region R(f1) for f1
is the overlapping part of these regions. In Fig. 7.1.1(b), R(
f1) and R(f2) represent the legal placement regions of f1
and f2. Because R(f1) and R(f2) overlap, we can replace
f1 and f2 by a new flip-flop f3 without violating the timing
constraint, as shown in Fig. 7.1.1(c). However, it is not
easy to identify and record feasible placement regions if
their shapes are diamond. Moreover, four coordinates are
required to record an overlapping region [see Fig.
7.1.2(a)]. Thus, if we can rotate each segment 45°, the
shapes of all regions would become where W(f1) and H(
f1) [W(f2) and H(f2)] denote the width and height of R(
f1) [R(f2)], respectively, in Fig.7.1.3 and the function
DIS_X(f1, f2) and (DIS_Y(f1, f2)) calculates the distance
between centers of R(f1) and R(f2) in x-direction (y-
direction).

Figure 4.1. (a) Feasible regionsRp (p1) and Rp(p2) for pins p1 and p2
which are enclosed by dotted lines, and the legal region R(f1) for f1

which is enclosed by solid lines. (b) Legal placement regions R(f1) and
R(f2) for f1 and f2, and the feasible area R3 which is the overlap region

of R(f1) and R(f2).
(c) New flip-flop f3 that can be used to replace f1 and f2 without violating

timing constraints for all pins p1, p2, p3, and p4.

Figure 4.2 (a) Overlapping region of two diamond shapes. (b)

Rectangular shapes obtained by rotating the diamond shapes in (a) by45°.

Figure 4.3 Overlapping relation between available placement regions of f

1and f 2.

C. BUILD A COMBINATION TABLE
 If we want to replace several flip-flops by a new
flip-flop fi’(note that the bit width of f’i should equal to
the summation of bit widths of these flip-flops), we have
to make sure that the new flip-flop fi’ is provided by the
library L when the feasible regions of these flip-flops
overlap. Build a combination table, which records all
possible combinations of flip-flops to get feasible flip-
flops before replacements. Thus, we can gradually replace
flip-flops according to the order of the combinations of
flip-flops in this table. Since only one combination of flip-
flops needs to be considered in each time, the search time
can be reduced greatly. We use a binary tree to represent
one combination for simplicity. Each node in the tree
denotes one type of a flip-flop in L. The types of flip-flops
denoted by leaves will constitute the type of the flip-flop
in the root. For each node, the bit width of the
corresponding flip-flop equals to the bit width summation
of flip-flops denoted by its left and right child [please see
Fig. 7.1.4(e) for example].

In order to use a binary tree to denote a combination
whose bit width is 4, there must exist flip-flops whose bit
widths are 2 and 3 in L . If the combination is not included
into any other combinations, it will be deleted. For
example, suppose a library L only provides two types of
flip-flops, whose bit widths are 1 and 4 (i.e., bmin = 1 and
bmax = 4), in Fig. 9(a). We first initialize two
combinations n1 and n2 to represent these two types of
flip-flops in the table T [see Fig. 7.1.4(a)]. Thus, two kinds
of flip-flop types whose bit widths are 2 and 3 are added
into L, and all types of flip-flops in L are sorted according
to their bit widths [see Fig. 7.1.4(b)]. Now, for each
combination in T, we would build a binary tree with 0-
level, and the root of the binary tree denotes the
combination. Next, we try to build new legal combinations
according to the present combinations. By combing two 1-
bit flip-flops in the first combination, a new combination
n3 can be obtained [see Fig. 7.1.4(c)]. Similarly, we can
get a new combination n4 (n5) by combining n1 and
n3(two n3’s) [see Fig. 7.1.4(d)]. Finally, n6 is obtained by
combing n1 and n4. All possible combinations of flip-flops
are shown in Fig. 9(e). Among these combinations, n5 and
n6 are duplicated since they both represent the same
condition, which replaces four 1-bit flip-flops by a 4-bit
flip-flop. To speed up our program, n6 is deleted from T
rather than n5 because its height is larger. After this
procedure, n4 becomes an unused combination [see Fig.
7.1.4(e)] since the root of binary tree of n4 corresponds to
the pseudo type, type3, in L and it is only included in n6.
After deleting n6, n4 is also need to be deleted. The last
combination table T is shown in Fig. 7.1.4(f)

(a)

Research script | IJRE
Volume: 05 Issue: 04 2018 © Researchscript.com 6

 IJRE - International Journal of Research in Electronics ISSN: 2349-252X

(b)

(c)

(d)

(e)

Figure 4.4. Example of building the combination table. (a) Initialize the
library

L and the combination table T . (b)
Pseudo types are added into L, and the corresponding binary tree is also

build for each combination in T. (c) New combination n3 is obtained
from combining two n1s. (d) New combination n4 is obtained from

combining n1 and n3, and the combination n5 is obtained from
combining two n3s.(e) Last combination table is obtained after deleting

the unused combination

D. MERGE FLIP-FLOPS
 Now, show how to use the combination table to
combine flip-flops in this subsection. To reduce the
complexity, we first divide the whole placement region
into several sub-regions, and use the combination table to
replace flip-flops in each sub-region. Then, several sub-
regions are combined into a larger sub-region and the flip-
flops are replaced again so that those flip-flops in the
neighboring sub-regions can be replaced further. Finally,
those flip-flops with pseudo types are deleted in the last
stage because they are not provided by the supported
library. Fig.4.5 shows this flow.

Figure.4.5 Region partition with six bins in one region

• Region partition (optional): To Speed up our problem
,we divide the whole chip into several sub – regions .By
suitable partition , the computation complexity of merging
flip flops can be reduced significantly.
• Replacement of flip flops in each sub-region:
corresponding to their types in the merge flip-, we first
give an equation to cost = routing length– α x (available
_area) ^1/2 Where routing _ length denoted the total
routing length between the new flip flop and the pins
connected to it, and available _area represents the
available area in the feasible region for placing the new
flip flop as is a weighting factor. The cost function
includes the term routing length to favor a replacement
that induces shorter wavelength. Besides, if the region has
larger available space to place a new flip-flop, it implies
that it has higher opportunities to combine with other flip-
flops in future and more power reduction. Thus, we will
give it a smaller cost. Once the flip flop cannot be merged
to a higher –bit type we ignore the available _area in the
cost function, and hence are set to 0.After combination
table. First, we link flip flops below the combinations
measure library. Then, quality factor for each if two
combination flip-flops as linked the left child and right
child of the root. For example, given a library containing
three types of flip-flops(1-,2-, and 4-bit), we first build a
combination table T as shown in fig7.16(a). In the
beginning, the flip-flops with various types are,
respectively, linked below n1, n2, and n3 in T according to
their types. Suppose we want to form a flip-flop in n4,
which needs two 1-bit flip-flops according to the
combination table. Each pair of flip-flops in n1 are
selected and checked to see if they can be combined. If
there are several possible choices, the pair with the
smallest cost value is chosen to break the tie. In
Fig.7.1.6(a), f1 and f2 are chosen because their
combination gains the smallest cost. Thus, we add a new
node f3 in the list below n4, and then delete f1 and f2 from
their original list [see Fig. 7.1.6(b)]. Similarly, f4 and f5
are combined to obtain a new flip-flop f6, and the result is
shown in Fig.7.1.6(c). After all flip-flops in the
combinations of 1-level trees (n4 and n5) are obtained as
shown in Fig.7.1.6(d), we start to form the flip-flops in the
combinations of 2-level trees (n6, and n7). In Fig.7.1.6(e),
there exist some flip-flops in the lists below n2 and n4, and
merge them to get flip-flops in n6 and n7, respectively.
Suppose there is no overlap region between the couple of
flip-flops in n2 and n4. It fails to form a 4-bit flip-flop in
n6. Since the 2-bit flip-flops f3 and f6 are mergeable, we
can combine them to obtain a 4-bit flip-flop f10 in n7.
Finally, because there exists no couple of flip-flops that
can be combined further, the procedure finishes as shown
in Fig.7.1.6(f). If the available overlap region of two flip-
flops exists, assign a new one to replace those flip-flops.

Research script | IJRE
Volume: 05 Issue: 04 2018 © Researchscript.com 7

 IJRE - International Journal of Research in Electronics ISSN: 2349-252X

Figure46. Example of replacements of flip-flops. (a) Sets of flip-flops

before merging. (b) Two 1-bit flip-flops, f1 and f2, are replaced by the 2-
bit flip-flopf3. (c) Two 1-bit flip-flops, f4 and f5, are replaced by the 2-bit
flip-flop f6. (d) Two 2-bit flip-flops, f7 and f8, are replaced by the 4-bit
flip-flop f9. (e) Two 2-bit flip-flops, f3 and f6, are replaced by the 4-bit

flip-flop f10.(f)Sets of flip-flops after merging

5. RESULTS

A. POWER ANALYSIS: COMPARISON TABLE
 The table shows the various test circuits and
experimental results. Case 5 is the largest circuit of about 1
700 000 flip-flops. Because the execution time is
dominated by the number of flip-flops in the circuit, Case
5 is applied to help to demonstrate the efficiency and
robust of our algorithm. Row 1 in the table lists all test
cases and row 2 shows types of different flip-flops that can
be used in each test case. Rows 3 and 4 respectively, show
numbers of flip-flops and total power consumption in
original test cases. After some flip-flops are replaced by
our algorithm, the power consumption of each design is
shown in row 5, and row 6 computes the ratio of power
reduction by our algorithm, which is denoted by PR_
Ratio. From rows 7 to 9, it shows the wire-length
reduction by our algorithm. Rows 7 and 8 show the
original wire-length and the wire-length after our program
is applied. Finally, the ratio of wire-length reduction,
which is denoted by WR_Ratio, is shown in row 9.The
values of PR_ Ratio in all cases are between 20 and 30.
Besides, the wire-length are less than the original circuit in
all cases, and the best value of WR_Ratio can achieve
42.18% improvement. Row 10 shows the execution time
of each case. Because of the long execution time of parser,
show the execution time of parser in row 11.

6. CONCLUSION
 This paper has proposed for flip-flop replacement for
power reduction in digital integrated circuit design. The
procedure of flip-flop replacements is depending on the
combination table, which records the relationships among
the flip-flop types. The concept of pseudo type is

introduced to help to enumerate all possible combinations
in the combination table. By the guidelines of
replacements from the combination table, the impossible
combinations of flip-flops will not be considered that
decreases execution time. Besides power reduction, the
objective of minimizing the total wire length also be
considered to the cost function. The experimental results
show that our algorithm can achieve a balance between
power reduction and wire length reduction. Moreover,
even for the largest case which contains about 1 700 000
flip-flops, our algorithm can maintain the performance of
power and wire length reduction in the reasonable
processing time.
TABLE I. POWER ANALYSIS: COMPARISON TABLE

REFERENCES

[1] Ya-Ting Shyu, Jai-Ming Lin, Chun-Po Huang, Cheng-Wu Lin,
Ying-Zu Lin, and Soon-Jyh Chang, Member, IEEE“ Effective
and Efficient Approach for Power Reduction by Using Multi-Bit
Flip-Flops,” IEEE transactions on very large scale integration
(VLSI) systems, vol. 21, no. 4, april 2013

[2] P. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, and
R. L.Allmon, “High-performance microprocessor design,” IEEE
J. Solid-StateCircuits, vol. 33, no. 5, pp. 676–686, May1998.

[3] W. Hou, D. Liu, and P.-H. Ho, “Automatic register banking for
low power clock trees,” in Proc. Quality Electron. Design, San
Jose, CA, Mar. 2009, pp. 647–652.

[4] D. Duarte, V. Narayanan, and M. J. Irwin, “Impact of technology
scaling in the clock power in Proc. IEEE VLSI Comput. Soc.
Annu. Symp.,Pittsburgh, PA, Apr. 2002, pp. 52–57.

[5] H.Kawagachi and T.Sakuari,”a reduced clock-swing flip flop
(RCSFF) for 63% clock power reduction ,’in VLSI circuits Dig
.Tech.PapersSymp,jun.1997,pp.97-98.

[6] Y.T .Chang,c,c-.Hsu,P.-H.Lin,Y.-W.Tsai,and S.F.Chen, “Post –
placement power optimization with multi-bit flip flops ,’’in Proc.
IEEE/ACM Comput.-Aided Design Int.Conf.,San
Jose,CA,NOV.2010, pp.218-223.

[7] Faraday Technology Corporation[Online].Available :http://www.
Faraday-tech.com/index.html

[8] C.Bron and J.Kerbosch,”Algorithm 457:Finding all cliques of an
undirected graph,’’ACMCommun,vol.16,no.9,pp.575-577,1973.

[9] CAD Contest of Taiwan[online].Available:
http://cad_contest.cs.Nctu.eu.tw/cad11

Research script | IJRE
Volume: 05 Issue: 04 2018 © Researchscript.com 8

	1. Introduction
	2. OVERVIEW
	3. MODIFIED SINGLE-BIT FLIP-FLOPS
	A. INTRODUCTION

	4. PROPOSED ARCHITECTURE
	A. DESIGN FLOW
	B. TRANSFORMATION OF PLACEMENT SPACE
	C. BUILD A COMBINATION TABLE
	D. MERGE FLIP-FLOPS

	5. RESULTS
	A. POWER ANALYSIS: COMPARISON TABLE

	6. CONCLUSION

