
         IJRCS - International Journal of Research in Computer Science                    ISSN: 2349-3828        

 

IMPLEMENTING META DATA SERVER AND 
LOAD BALANCING IN DISTRIBUTED CLOUD 

ENVIRONMENT
M.Akhila1 | R.Sujitha2 

1(UG Student, Christ the King Engineering College, akimicheal@gmail.com)  
2(Assistant Professor, Christ the King Engineering College, srisuji14@gmail.com) 

___________________________________________________________________________________________________

Abstract— The Large class of modern distributed file systems treats metadata services as an independent system component, 
separately from data servers. The availability of the metadata service is key to the availability of the overall system. Given the high rates 
of failures observed in large-scale data centres, distributed file systems usually incorporate high- availability features. A typical 
approach in the development of distributed file systems is to design and develop metadata services from the ground up, at significant cost 
in terms of complexity and time, often leading to functional shortcomings. Our motivation in this paper was to improve on this state of 
things by defining a general-purpose architecture for HA metadata services that can be easily incorporated and reused in new or 
existing file systems, reducing development time. This project is developed using data replication with Meta server, it acquires more 
memory and therefore the data’s won’t be interact during a secure approach & not in ordered order .To overcome these drawback we 
elect the formula of Fragment and Snuffle algorithm. To overcome this problem we choose the Algorithm of FS The scope of this project 
is the Detach & reproduces methodology; we divide a file into fragments, and replicate the fragmented data over the cloud nodes. Each 
of the nodes stores only a single fragment of a particular data file that ensures that even in case of a successful attack, no meaningful 
information is revealed to the attacker.  

Keywords— Distributed File Systems; High Availability; System Recovery; Metadata Services; Fragment and Snuff 
______________________________________________________________________________________________________________

1.  INTRODUCTION  
The availability of the metadata service is key to the 
availability of the overall system: If clients cannot contact 
the metadata service, they only have limited (e.g., over the 
duration of a lease) or no access to the entire data set. To 
ensure high availability of the metadata service, systems 
must be able to handle failure. In large-scale systems, 
failures tend to be the norm rather than the exception and 
can be caused by either planned or unplanned events 
including hardware failures, software bugs,reboots, 
software updates and maintenance. Our implementation of 
the RMS architecture relies on three interoperating layered 
components: a highly1045-9219 .To make our approach 
practical, we base it on an existing replicated database 
exposing a keyvalue API, Oracle Berkeley DB (or 
BDB).Our experience with HDFS, a system that was not 
originally implemented over BDB, shows that it is possible 
to retrofit our solution into the metadata server with a 
reasonable level of complexity, achieving high availability 
as well as larger file system sizes than main- memory 
permits. A typical approach in the development of 
distributed file systems is to design and develop metadata 
services from the ground up, at significant cost in terms of 
complexity and time, often leading to functional 
shortcomings. Our motivation in this paper was to improve 
on this state of things by defining a general-purpose 
architecture for HA metadata services that can be easily 
incorporated and reused in new or existing file systems, 
reducing development time. This project is developed 
using data replication with Meta server, it acquires more 
memory and therefore the data’s won’t be interact during a 
secure approach & not in ordered order. To overcome these 
drawback we elect the formula of Fragment and Snuffle 

algorithm. To overcome this problem we choose the 
Algorithm of FS The scope of this project is the Detach & 
reproduces methodology; we divide a file into fragments,     
and     replicate     the     fragmented     data     over     the     
cloud     nodes. 

 
Each  of  the nodes stores only a single fragment of a 
particular data file that ensures that even in case of a 
successful attack, no meaningful information is revealed to 
the attacker. Modern large- scale distributed and parallel 
file systems such as PVFS, HDFS, GoogleFS, pNFS, and 
Ceph treat metadata services as an independent system 
component, separately from data servers (Figure 1). Two 
reasons behind this separation are design simplicity and the 
ability to scale the two parts of the system independently. 
The availability of the metadata service is key to the 
availability of the overall system: If clients cannot contact 
the metadata service, they only have limited (e.g., over the 
duration of a lease) or no access to the entire data set. To 
ensure high availability of the metadata service, systems 
must be able to handle failure. In large-scale systems, 
failures tend to be the norm rather than the exception and 

 
IJRCS - International Journal of Research in Computer Science 
Volume: 01 Issue: 02 2014                                        www.researchscript.com                                                                 27  

 



         IJRCS - International Journal of Research in Computer Science                    ISSN: 2349-3828        

can be caused by either planned or unplanned events 
including hardware failures, software bugs, reboots, 
software updates and maintenance. The high rate of failures 
in conjunction with the constant changes in modern data 
centers, typically call for replication as a standard method 
to implement highly available metadata services. 
Prominent distributed file systems, such as the Parallel 
Virtual File System1 (PVFS) and the Hadoop File System 
(HDFS), already offer highly available (HA) metadata 
services. PVFS uses stateless replication with multiple 
metadata servers over a shared network-accessible storage 
service, such as NFS, for storing file system metadata. A 
drawback of such a solution is the single point of failure 
posed by the shared storage server. HDFS version 2.x 
avoids this problem by using stateful replication over 
quorum based replicated storage. 

2. PROBLEM DESCRIPTION 
The prime disadvantage is security. To ensure security, 
cryptographic techniques cannot be directly adopted. 
Sometimes the cloud service provider may hide the data 
corruptions to maintain the reputation. To avoid this 
problem, we introduce an effective third party auditor to 
audit the user’s outsourced data when needed.We are not 
the only researchers to have investigated software diversity 
for ROP attack mitigation. First, the software 
diversification is not done frequently enough. Second, 
some of the existing defenses require the source code or 
other additional information that is not usually available. 
Third, the randomization is not fine grained enough leaving 
large code chunks unrandomized. Fourth, significant 
runtime overhead is incurred throughout the runtime of the 
application by introducing additional data structures. 
Marlin addresses these limitations and provides a strong 
and efficient defense technique against ROP attacks.With 
any solution, there are always costs that must also be 
considered. In our proposed scheme, there is a performance 
impact when the process begins. We have evaluated the 
time to randomize compiled binaries on a selection of 
commonly used applications and Linux coreutils, showing 
that the performance penalty for Marlin is reasonable in the 
average case. Thus, our work demonstrates that, although 
Marlin imposes certain performance costs, its success in 
thwarting ROP attacks makes this a feasible approach for 
systems that prioritize execution integrity over optimal 
performance. In Section 3 we describe techniques for 
minimizing this performance impact. For instance, 
performing the randomization during offline pre-processing 
significantly reduces the startup costs. 

3. IMPLEMENTATION 
A Systems Development Life Cycle (SDLC) adheres to 
important phases that are essential for developers, such as 
planning, analysis, design, and implementation, and are 
explained in the section below. A number of system 
development life cycle (SDLC) models have been created: 
waterfall, fountain, and spiral, build and fix, rapid 
prototyping, incremental, and synchronize and stabilize. 
The oldest of these, and the best known, is the waterfall 
model: a sequence of stages in which the output of each 
stage becomes the input for the next. 
 

3.1 User Authentication 
User Authentication is the process of identity verification 
you are trying to prove a user is who they say they are. For 
a user to prove their identity, a user needs to provide some 
sort of proof of identity that your system understands and 
trust. The authentication process starts with creating an 
instance of the Login Context. Various constructors are 
available; the example uses the Login Context variety. The 
first parameter is the name (which acts as the index to the 
login module stack configured in the configuration file), 
and the second parameter is a callback handler used for 
passing login information to the Log server. Callback 
Handler has a handle method which transfers the required 
information to the Meta server/Log server. 
 
3.2 Fragmentation 
We are splitting the file in to small fragments. Once the file 
is split into fragments, this concept selects the cloud nodes 
for fragment placement. The selection is made by keeping 
an equal focus on both security and performance in terms 
of the access time. The process is repeated until all of the 
fragments are placed at the nodes. Partial Replication 
represents the fragment placement methodology. Mainly 
we focus on the storage system security in this work. As 
stated above, the probability of a successful coordinated 
attack is extremely minute 
 
3.3 Data Replication and Data Encryption 
This component supports the replication mechanisms by 
invoking replicas and managing their execution based on 
the client’s requirements. We denote the set of VM 
instances that are controlled by a single implementation of 
a replication mechanism as a replica group. Each replica 
within a group can be uniquely identified, and a set of rules 
R that must be satisfied by a replica group are specified. 
The task of the replication manager is to make the client 
perceive a replica group as a single service, and to ensure 
that the fault free replicas exhibit correct behavior during 
execution time. To support a replication mechanism, the 
replica invoker first contemplates the desired replication 
parameters such as the style of replication (active, passive, 
cold passive, hot passive), number of replicas, and 
constraints on relative placement of individual replicas, and 
forms the replica group. 
 
3.4 Server Analysis 
The task of offering fault analysis as a service requires the 
service provider to realize generic fault analysis 
mechanisms such that the client’s applications deployed in 
virtual machine instances can transparently obtain server 
status properties. To this aim, we define ft−unit as the 
fundamental module that applies a coherent server analysis 
mechanism to a recurrent system failure at the granularity 
of a VM instance. The notion of ft−unit is based on the 
observation that the impact of hardware failures on client’s 
applications can be handled by applying server analysis 
mechanisms directly at the virtualization layer than the 
application itself For instance, server analysis of the 
banking service can be increased by replicating the entire 
VM instance in which its application tier is deployed on 
multiple physical nodes, and server crashes can be detected 
using well-known failure detection algorithms such as the 

Research script | IJRCS 
Volume: 01 Issue: 02 2014                                    © Researchscript.com                                                                        28  

 



         IJRCS - International Journal of Research in Computer Science                    ISSN: 2349-3828        

heartbeat protocol. The design stage starts when a client 
requests the service provider to offer server analysis 
support to its applications 
 
3.5 Data Retrival & Decryption 
This component supports the replication mechanisms by 
invoking replicas and managing their execution based on 
the client’s requirements. We denote the set of VM 
instances that are controlled by a single implementation of 
a replication mechanism as a replica group. Each replica 
within a group can be uniquely identified, and a set of rules 
R that must be satisfied by a replica group are specified. 

4. RESULTS 
Output design generally refers to the results and 
information that are generated by the system for many end-
users; output is the main reason for developing the system 
and the basis on which they evaluate the usefulness of the 
application. Computer output is the most important and 
direct source of information to the user. Output design is 
very important phase because the output will be in an 
interactive manner. The output are  the fragmentations and 
the server availability detection 

 

5. CONCLUSION AND FUTURE SCOPE 
In this paper we proposed a general-purpose architecture of 
replicated metadata services in distributed file systems, 
named RMS. Our evaluation shows that an RMS variant of 
HDFS performs comparably to native implementations 
when contrasted in micro benchmarks. However, this has 
to come at the expense of durability: Write transactions 
with synchronous commits to disk are more expensive in 
HDFS-RMS (SYNC mode)HDFS-HA with similar 
behavior, pointing to the efficiencies possible in special- 
purpose software (HDFS-HA) compared to general-
purpose designs (HDFS-RMS); one can improve HDFS-
RMS performance to the levels of HDFS-HA by offering 
somewhat weaker durability semantics using the NOSYNC 
mode, which we consider as an acceptable tradeoff in 
replicated setups. Our experience with tuning our HDFS-
RMS prototype implementation provides important lessons 
for RMS implementers: Avoid a schema that results into 
spreading of metadata onto a large number of small tables, 
and use underlying database implementations that allow for 
sufficient concurrency. In most cases, including application 
level benchmarks, RMS variants do not incur an end to- 
end performance penalty. In terms of availability, the RMS 
variant of HDFS matches the recovery characteristics of 

HDFS-HA v2.x, a state of the art implementation. HDFS-
RMS is resilient to the loss of any number of Name Nodes 
(assuming sufficient number of  replicas), whereas 
HDFSHA allows only up to two Name Nodes. Our results 
show that there would be a performance benefit if HDFS-
RMS was able to maintain hot-spare Name Nodes at 
backup BDB replica nodes. To achieve this, it would have 
to capture updates communicated from master to backup 
BDB replicas (for example, by inspecting the BDB write-
ahead log) and apply them to HDFS in-memory structures. 
When the master fails, recovery code at a backup would 
have to ensure that log updates are fully reflected at Name 
Node state prior to appointing it a master. Implementation 
of this functionality within HDFS is beyond the scope of 
this paper and subject of future work. 
 
REFERENCES 
 

[1] Stamatakis, D., Tsikoudis, N., Smyrnaki, O. and Magoutis, 
K.,“Scalability of Replicated Metadata Services in Distributed 
File Systems,” in Proc. of 12th IFIP Int. Conference on 
Distributed Applications and Interoperable Systems (DAIS) 2012, 
Stockholm,Sweden, 2012. 

[2] Ligon, M., Ross, R., “Overview of the Parallel Virtual 
FleSystem,” in Proceedings of USENIX Extreme Linux 
Workshop, Monterey, CA, USA, 1999. 

[3] Shvachko, K., Kuang, H., Radia, S. and Chansler, R., “The 
Hadoop Distributed File System,” in Proc. of IEEE Conference 
on Mass Storage Systems and Technologies (MSST), Lake 
Tahoe,NV, 2010. 

[4] Ghemawat, S., Gobioff, H. and Leung, S.-T., “The Google File 
System,” in Proc. of 19th ACM Symposium on Operating 
Systems Principles (SOSP-19), Bolton Landing, New York, 2003. 

[5] Shepler, S. et al., “Parallel NFS, RFC 5661-5664,” 
http://tools.ietf.org/html/rfc5661, IETF. 

Research script | IJRCS 
Volume: 01 Issue: 02 2014                                    © Researchscript.com                                                                        29  

 


	1.  Introduction
	2. PROBLEM DESCRIPTION
	3. IMPLEMENTATION
	4. RESULTS
	5. CONCLUSION AND FUTURE SCOPE

