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Abstract— Deduplication has become a widely deployed technology in cloud data centers to improve IT resources efficiency. 
However, traditional techniques face a great challenge in big data deduplication to strike a sensible tradeoff between the conflicting 
goals of scalable deduplication throughput and high duplicate elimination ratio. We propose AppDedupe, an application-aware scalable 
inline distributed deduplication framework in cloud environment, to meet this challenge by exploiting application awareness, data 
similarity and locality to optimize distributed deduplication with inter-node two-tiered data routing and intra-node application-aware 
deduplication. It first dispenses application data at file level with an application-aware routing to keep application locality, then assigns 
similar application data to the same storage node at the super-chunk granularity using a hand printing-based stateful data routing 
scheme to maintain high global deduplication efficiency, meanwhile balances the workload across nodes. AppDedupe builds application-
aware similarity indices with super-chunk handprints to speedup the intra-node deduplication process with high efficiency. Our 
experimental evaluation of AppDedupe against state-of-the-art, driven by real-world datasets, demonstrates that AppDedupe achieves 
the highest global deduplication efficiency with a higher global deduplication effectiveness than the high-overhead and poorly scalable 
traditional scheme, but at an overhead only slightly higher than that of the scalable but low duplicate-elimination-ratio approaches  
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1.  INTRODUCTION  
Recent technological advancements  in cloud computing,  
internet of things and social network, have led to a deluge 
of data from distinctive domains over the past two decades. 
Cloud data centers are awash in digital data, easily 
amassing petabytes and even exabytes of information, and 
the complexity of data management escalates in big data. 
However, IDC data shows that nearly 75% of our digital 
world is a copy [1]. Data deduplication [2], a specialized 
data reduction technique widely deployed in  disk- based 
storage systems, not only saves data storage space, power 
and cooling in data centers, also decreases significant 
administration time, operational complexity and risk of 
human error. It partitions large data objects into smaller 
parts,  called chunks, represents these chunks by their 
fingerprints, replaces the duplicate chunks with their 
fingerprints after chunk  fingerprint index lookup, and only 
transfers or stores the unique chunks  for the purpose of 
improving communication and storage effi-cie ncy. Data 
deduplication has been successfully used in various 
application scenarios, such as backup system [1], virtual 
machine storage[3], primary storage [4], and WAN 
replicationBig data deduplication is a highly scalable 
distrideduplication technique to manage the data deluge 
under the changes in storage architecture to meet the 
service level agreement requirements of cloud storage. It is 
gen-erally in favor of source inline deduplication design, 
be-cause it can immediately identify and eliminate dupli-
cates in datasets at the source of data generation, and hence 
significantly reduce physical storage  capacity re-
quirements and save network bandwidth during data 
transfer. It performs in a typical distributed deduplication 
[6], [7], [8], [9], [10], [11], [12] framework to satisfy scala-
ble capacity and performance requirements in massive 
data. The framework includes inter-node data assignment 
from clients to multiple deduplication storage  nodes by  a  

data  routing scheme, and independent intra-node redun-
dancy suppression in individual storage nodes.. 
 
2. RELATED WORKS 
2.1 CHUNKING OF DATA 
Unfortunately, this chunk-based inline distributed de- 
duplication framework at large scales faces challenges in 
both inter-node and intra-node scenarios. First, for the 
inter- node scenario, different from those distributed de- 
duplication with high overhead in global match query [37], 
[43], there is a challenge called deduplication node in-
formation island. It means that deduplication is only per-
formed within individual nodes due to the communication 
overhead considerations, and leaves the cross-node 
redundancy untouched. Second, for the intra-node sce-
nario, it suffers from the chunk index lookup disk 
bottleneck. There is a chunk index of a large dataset, which 
maps each chunk’s fingerprint to where that chunk is stored 
on disk in order to identify the replicated data. It is 
generally too big to fit into the limited memory of a 
deduplication node [3], and causes the parallel 
deduplication perfor-mance of multiple data streams to 
degrade significantly due to the frequent and random disk 
index I/Os. There are several existing solutions that aim to 
tackle the above two challenges of distributed 
deduplication by exploiting data similarity or locality. 
Locality means that the chunks of a data stream will appear 
in approximately the same order again with a high 
probability. Locality-only based approaches [7], [8], [9] 
distribute data across deduplication servers at coarse 
granularity to  achieve scalable deduplication throughput 
across the nodes by exploiting locality in data streams, but 
they suffer low duplicate elimination ratio due to high 
cross- node redundancy. Similarity in this context means 
that two segments of a data stream or two files of a dataset 
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share many chunks even though they arrive in a random 
order. 
  
The most similar stored segments or files are prefetched to 
deduplicate the processing segment or file in low-locality 
workloads by exploiting a property called logical 
localitySimilarity-only based methods [6], [20], [30] 
leverage data similarity to distribute data among 
deduplication nodes to reduce cross-node duplication, 
while they also often fail to obtain good load balance and 
high intra-node deduplication ratio by fingerprint based 
mapping and allowing some duplicate chunks to be stored. 
In recent years, researchers [32], [33] exploitbothdata 
similarity and locality to strike a sensible tradeoff between 
the con-flicting goals of high deduplication effectiveness 
and high performance scalability for distributed 
deduplication 
 
2.2 CONNECTED  CAR ENVIRONMENT 
• The connected car is receiving much attention as 
the next- generation Vehicle-IT convergence technology 
due to the rapid development of mobile communication 
technology and the ex- pansion of the smart device and 
application services. Many auto manufactures have been 
independently developing connected car technologies such 
as OnStar of GM or Connected Drive of BMW. In 
addition,  with the popularity  of a Pay-as-You-Drive  
insurance, a variety of electronic devices are being sold 
that connect to the car’s OBD2 (On-Board Diagnostics) 
port and can be used by smartphone applications. In 
general, a connected car is a vehicle that is always 
connected to external networks while driving. As in [16] 
and [18], Our attack model is designed based on an 
environment where a driver uses a self-diagnostic app to 
monitor status information after installing an OBD2 scan  
tool  on  the vehicle and then pairing it with his/her 
smartphone by Bluetooth. When the driver installs on 
his/her smartphone the malicious self- diagnostic app 
distributed by an attacker, the attacker can launch the 
actual attack. The attacker can obtain status informa-tion of 
the vehicle from the malicious self-diagnostic app and use 
it to inject malicious data into the in-vehicle network. Since 
the malicio us self-diagnostic app and attacker’s server 
commu-nicate using the mobile  communication  network 
(e.g., 3G, 4G, or LTE), the attack is unconstrained by 
distance. Furthermore, as our attack model uses ECU 
forced control data commonly used for the same model 
(more precisely, vehicles with the  same  configuration  of 
automotive electronic subsystems), it is not necessary to 
physically occupy the target vehicle in advance. The victim  
of the  target vehicle downloads the malicious self-
diagnostic app to his/her smart-phone through an app 
market. The victim does not recognize that the app is 
performing malicious acts such as eavesdropping or replay 
attack on the in-vehicle CAN. In our proposed attack 
model, we do not consider an attack to compromise the 
ECU installed on the vehicle inside or an attack to 
manipulate  the firmware  of ECU, as these requirements 

An adversary has access to an automotive diagnostic tool 
to acquire a CAN data frame to force control of an ECU 
before launching an actual attack. The attacker can 
eavesdrop and inject the CAN data frame using a malicious 
self-diagnostic app into the in-vehicle CAN in the 
connected car environment. Thus, the attacker does not 
have to attack the target from a short range. The app may 
be widely spread through the app markets by masquerading  
as a legitimate  self-diagnostic  app for a vehicle. 
 
3 TWO-TIERED DATA ROUTING SCHEME 
As a new contribution of this paper, we present the two- 
tiered data routing scheme including: the file-level appli- 
cation aware routing decision in director and the super- 
chunk  level  similarity  aware  data  routing  in  clientThe 
  
application aware routing decision is inspired by our 
application difference redundancy analysis in Section 2.2. 
It can distinguish from different types of application data 
by exploiting application awareness with filename 
extension, and selects a group of dedupe storage nodes as 
the corresponding application storage nodes, whichhave 
stored the same type of application data with the file in 
routing. This operation depends on an application route 
table structure that builds a mapping between application 
type and storage node ID. The application aware routing 
algorithm is shown in Algorithm 1, which performs in the 
application aware routing decision module of directo 
 
Algorithm 1. Application Aware Routing Algorithm 
 
Input: the full name of a file, fullname, and a list of all 
dedupe storage nodes {S1, S2, …, SN} 
Output: a ID list of application storage node, 
ID_list={A1, A2, … , Am} 
 
1. Extract the filename extension  as the application 
type from the file full name fullname, sent from client side; 
2. Query the application route table in director, and 
find the dedupe storage node Ai that have stored the same 
type of application data; We get the corresponding 
application  storage nodes ID_list={A1, A2, … , Am} 
 {S1, S2, …, SN}; 
3. Check the node list: if ID_list=  or all   
ID_list are overloaded, then add the dedupe storage node 
SL with lightest workload into the list ID_list={SL}; 
4. Return the result ID_list to the client. 
  
Algorithm 2. Handprinting Based Stateful Data Routing 
 
 Input: a chunk fingerprint  list of super-chunk S in a file, 
{fp1, fp2, … , fpc}, and the corresponding application  
stor-age node ID list of the file, ID_list={A1, A2, … , Am} 
Output: a target node ID, i 
 
1. Select the k smallest  chunk fingerprints  {rfp1, rfp2, 
…, rfpk} as a handprint for the super-chunk S by sorting 
the chunk fingerprint list {fp1, fp2, …, fpc}, and sent the 
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handprint to k candidate nodes with IDs mapped by 
consistent hashing in the m corresponding  application  
storage nodes; 
2. Obtain the count of the existing representative 
finger-prints of the super-chunk S in the k candidate nodes  
by comparing the representative fingerprints of the 
previously stored super-chunks in the application-aware 
similarity index, are denoted as {r1, r2, …, rk}; 
3. Calculate the relative storage usage, which is a 
node storage usage value divided by the average storage 
usage value, to balance the capacity load in the k can-
didate nodes,  are denoted  as {w1, w2, 
…, wk}; 
Choose the dedupe storage node with ID i that satisfies 
ri/wi 
= max{r1/w1, r2/w2, …, rk/wk} as the target node. 
 
3.1 Application-aware  Deduplication  Efficiency 
In our design, the client performs data partitioning and 
chunk fingerprinting in parallel before data routing deci- 
sion. It can divide the files into small chunks with fix-sized 
SC or variable-sized CDC chunking methods for each kind 
of application files, and calculates the chunk fingerprints 
with cryptographic hash function. Then, hundreds of or 
thousands of consecutive smaller chunks are grouped 
together as a super-chunk for data routing. The 
implementation of the hash fingerprinting is based the 
OpenSSL library. According to the study in [19], we select 
SHA-1 to reduce the probability of hash collision for fix- 
sized SC chunking, while we choose MD5 for variable 
sized CDC chunking for high hashing throughputwith 
almost the same hash collision possibility.To exploit the 
multi-core or many-core resource of the dedupe storage 
node, we also develop parallel applica-tion-aware 
similarity index lookup in individual dedupe servers. For 
our multiple-data-stream based parallel de-duplication, 
each data stream has a deduplication thread, but all data 
streams share a common hash-table based application-
aware similarity index in each dedupe server. We lock the 
hash-table based application- aware similarity index by 
partitioning the index at the application granu-larity to 
support concurrent lookup. As we demonstrated in [33], the 
single-node parallel deduplication perform the best in 
application-aware- similarity-index lookup when the 
number of data streams equals to that of supported CPU 
logical cores, while the performance of more streams drops 
when the number of locks is larger than the num-ber of 
data stream because of the overhead of thread con-text 
switching that causes data swapping between cache and 
memory. 
We compare our application aware similarity index with 
the traditional similarity  index in [33] for parallel 
deduplication throughput in single dedupe storage node 
with multiple data streams. The results in Fig. 6 show the 
parallel deduplication throughput using the VM dataset, 
with data input from RAMFS to eliminate the perfor-
mance interference of the disk I/O bottleneck. We test the 
throughput of both traditional similarity index (Naive) and 

application aware similarity index (Application aware) 
with cold cache or warm cache, respectively. Here, “cold 
cache” means the chunk fingerprint cache is empty when 
we first perform parallel deduplication with multi-ple 
streams on the VM dataset. While “warm cache” 
  
means the duplicate chunk fingerprint had already been 
stored in the cache, when we perform parallel deduplica-
tion with multiple streams again on the same dataset. We 
observe that the parallel deduplication schemes with ap-
plication-aware similarity index perform much better 
 
3.2 Load Balance in Super-Chunk Assignment 
Load balance is an important issue in distributed storage 
technique [41]. It can help improve system scalability by 
ensuring that client I/O requests are distributed equitably 
across a group of storage servers. The implementation of 
consistent hashing based DHTs in traditional distributed 
deduplication [6], [9], [10] are considerable load  
imbalance due to its stateless assignment design. In 
particular 
 

 
a storage node that happens to be responsible for a larger 
segment of the keyspace will tend to be assigned a greater 
number of data objects. In subsection 4.2, we defined DS 
as a metric for data skew in the storage server cluster. Data 
assignment method can achieve global load balance when 
DS=0. The larger DS value we measured inthe test, the 
more serious load imbalance happened in the storage 
cluster. 
 
To make our conclusionmore general, we not only consider 
an ideal scenario that each super-chunk is filled with 
random data in Fig. 8(a), but also perform the tests on real 
world datasets: VM images, Linux source code, and mail 
datasets with 10 and 1280 nodes, respectively, as shown in 
Fig. 8(b). Super- chunk chooses the least loaded node in 
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the k storage nodes that are mapped independently and 
uniformly at random by consistent hashing with the k  
representative fingerprints in  its  handprint.  The 
effectiveness of load balancing has been tested with 
different handprint size and node number in Fig. 8. The 
average load of each node is 65536 super-chunks with 1 
MB size. The important implication of the results is that 
even a small amount of representative fingerprints in 
handprint can lead to drastically different results in load 
balancing. It shows that traditional schemes, like DHT [9] 
or hash-bucket [10], with only one representative finger-
print for choice are hard to keep a good load balance in the 
super- chunk assignment. When the cluster scales to 
hundreds or thousands of nodes, our handprint technique 
can keep a good load balance (the metric of data skew is 
less than 1) by routing the super-chunks with k  4 
random choices. We select handprint size from 4 to 16 to 
make a tradeoff between load balance and communica-tion 
overhead for large-scale distributed deduplication in big 
data. 
 
5 DISTRIBUTED DEDUPLICATION EFFICIENCY 
We route data at the super-chunk granularity to preserve 
data locality for high performance of distributed dedup-
lication, while performing deduplication at the chunk 
granularity to achieve high deduplication ratio in each 
server locally. Since the size of the super-chunk is very 
sensitive to the tradeoff between the index lookup per-
formance and the distributed deduplication effectiveness, 
as demonstrated by the sensitivity analysis on super- chunk 
size in [7], we also choose the super-chunk size of 1MB to 
reasonably balance the conflicting objectives of cluster-
wide system performance  and capacity saving, and to 
fairly compare our design with the previous EMC 
distributed deduplication mechanism. 

 
ful scheme for a clusterof 128 server nodes on the seven 
datasets, while this performance margin narrows to 103.6% 
when averaging over all cluster sizes, from 1 through 128. 
Stateless routing performs worse than AppDedupe, 
Produck and Stateful routing due to its low cluster-wide 
data reduction ratio and unbalanced capaci- ty distribution. 
Extreme Binning underperforms Stateless routing on the 
workloads because ofthe large file size and skewed file size 
distribution in the datasets, work-load properties   that   
tend   to   render   Extreme   Binning’s 

similarity detection ineffective. Produck achieves higher 
normalized EDR than Stateless routing and Extreme Bin- 
ning due to its stateful routing design, but it underper- 
forms AppDedupe on all datasets for its low deduplica- 
tion ratio and unbalanced load distribution. AppDedupe 
outperforms Extreme Binning in EDR by up to 72.7% for a 
cluster of 128 nodes on the five datasets containing file- 
level information. For the seven datasets, AppDedupe is 
better than Stateless routing in EDR by up to 50.5% for a 
cluster of 128 nodes. Our AppDedupe achieves an im- 
provement of 28.2% and 11.8% in EDR with respect to 
Produck and -Dedupe on all datasets in a cluster of 128 
nodes, respectively. As can be seen from the trend of 
curves, these improvements will likely be more pro- 
nounced with cluster sizes larger than 128 
duplication due to their stateless designs. Stateful routing, 
on the other hand, must send the fingerprint lookup re-
quests to all nodes, resulting in 1-to-all communication that 
causes the  system overhead to grow linearly with the node 
number even though it can reduce the overhead in each 
node by using a sampling scheme. Produck has high 
communication overhead due to its fine-grained chunk size 
with 1KB, while other deduplication methods adapt 4KB 
or 8KB. The number of fingerprint-lookup messages in 
Produck is about four times that of AppDedupe, Ex- treme 
Binning and Stateless routing, and it grows as slow as these 
three low-overhead schemes. As described in Algorithm 1, 
the main reason for the low system over-head in 
AppDedupe is that the pre- routing fingerprint-lookup 
requests for each super- chunk only need to be sent to at 
most 8 candidate nodes, and only for the lookup of 
representative fingerprints, which is 1/32 of the num-ber of 
chunk fingerprints, in these candidate nodes. The message 
overhead of AppDedupe in fingerprint lookup is about 1.25 
times that of Stateless routing and Extreme Binning in all 
scales. -Dedupe is the preliminary version of our 
AppDedupe, and they have almost the same com-
munication overhead due to their consistent interconnect 
protocol. 
 
6. CONCLUSION 
In this paper, we describe AppDedupe, an application- 
aware  scalable  inline  distributed deduplication frame- 
work for big data management, which achieves a tradeoff 
between scalable performance and distributed deduplica- 
tion  effectiveness  by exploiting application awareness, 
data similarity and locality. It adopts a two-tiered data 
routing scheme to route data at the super-chunk granular- 
ity to reduce cross-node data redundancy with good load 
balance and low communication overhead, and employs 
application-aware similarity index based optimization to 
improve deduplication efficiency in each node with very 
low RAM usage. Our real-world trace-driven evaluation 
clearly  demonstrates  AppDedupe’s  significant adven- 
tages over the state-of-the-art distributed deduplication 
schemes for large clusters in the following important two 
ways. First, it outperforms the extremely costly and poor 7   
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