
 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

EFFICIENT CLOUD BACKUP USING
CHUNKING OF DATA

Amal Thankachan1 | R.Sujitha2
1(UG Student, Christ the King Engineering College, amalthankachan001@gmail.com)

2(Assistant Professor, Christ the King Engineering College, srisuji14@gmail.com)

Abstract— Deduplication has become a widely deployed technology in cloud data centers to improve IT resources efficiency.
However, traditional techniques face a great challenge in big data deduplication to strike a sensible tradeoff between the conflicting
goals of scalable deduplication throughput and high duplicate elimination ratio. We propose AppDedupe, an application-aware scalable
inline distributed deduplication framework in cloud environment, to meet this challenge by exploiting application awareness, data
similarity and locality to optimize distributed deduplication with inter-node two-tiered data routing and intra-node application-aware
deduplication. It first dispenses application data at file level with an application-aware routing to keep application locality, then assigns
similar application data to the same storage node at the super-chunk granularity using a hand printing-based stateful data routing
scheme to maintain high global deduplication efficiency, meanwhile balances the workload across nodes. AppDedupe builds application-
aware similarity indices with super-chunk handprints to speedup the intra-node deduplication process with high efficiency. Our
experimental evaluation of AppDedupe against state-of-the-art, driven by real-world datasets, demonstrates that AppDedupe achieves
the highest global deduplication efficiency with a higher global deduplication effectiveness than the high-overhead and poorly scalable
traditional scheme, but at an overhead only slightly higher than that of the scalable but low duplicate-elimination-ratio approaches

Keywords— Big Data Deduplication, Application Awareness, Data Routing, Handprinting, Similarity Index
__

1. INTRODUCTION
Recent technological advancements in cloud computing,
internet of things and social network, have led to a deluge
of data from distinctive domains over the past two decades.
Cloud data centers are awash in digital data, easily
amassing petabytes and even exabytes of information, and
the complexity of data management escalates in big data.
However, IDC data shows that nearly 75% of our digital
world is a copy [1]. Data deduplication [2], a specialized
data reduction technique widely deployed in disk- based
storage systems, not only saves data storage space, power
and cooling in data centers, also decreases significant
administration time, operational complexity and risk of
human error. It partitions large data objects into smaller
parts, called chunks, represents these chunks by their
fingerprints, replaces the duplicate chunks with their
fingerprints after chunk fingerprint index lookup, and only
transfers or stores the unique chunks for the purpose of
improving communication and storage effi-cie ncy. Data
deduplication has been successfully used in various
application scenarios, such as backup system [1], virtual
machine storage[3], primary storage [4], and WAN
replicationBig data deduplication is a highly scalable
distrideduplication technique to manage the data deluge
under the changes in storage architecture to meet the
service level agreement requirements of cloud storage. It is
gen-erally in favor of source inline deduplication design,
be-cause it can immediately identify and eliminate dupli-
cates in datasets at the source of data generation, and hence
significantly reduce physical storage capacity re-
quirements and save network bandwidth during data
transfer. It performs in a typical distributed deduplication
[6], [7], [8], [9], [10], [11], [12] framework to satisfy scala-
ble capacity and performance requirements in massive
data. The framework includes inter-node data assignment
from clients to multiple deduplication storage nodes by a

data routing scheme, and independent intra-node redun-
dancy suppression in individual storage nodes..

2. RELATED WORKS
2.1 CHUNKING OF DATA
Unfortunately, this chunk-based inline distributed de-
duplication framework at large scales faces challenges in
both inter-node and intra-node scenarios. First, for the
inter- node scenario, different from those distributed de-
duplication with high overhead in global match query [37],
[43], there is a challenge called deduplication node in-
formation island. It means that deduplication is only per-
formed within individual nodes due to the communication
overhead considerations, and leaves the cross-node
redundancy untouched. Second, for the intra-node sce-
nario, it suffers from the chunk index lookup disk
bottleneck. There is a chunk index of a large dataset, which
maps each chunk’s fingerprint to where that chunk is stored
on disk in order to identify the replicated data. It is
generally too big to fit into the limited memory of a
deduplication node [3], and causes the parallel
deduplication perfor-mance of multiple data streams to
degrade significantly due to the frequent and random disk
index I/Os. There are several existing solutions that aim to
tackle the above two challenges of distributed
deduplication by exploiting data similarity or locality.
Locality means that the chunks of a data stream will appear
in approximately the same order again with a high
probability. Locality-only based approaches [7], [8], [9]
distribute data across deduplication servers at coarse
granularity to achieve scalable deduplication throughput
across the nodes by exploiting locality in data streams, but
they suffer low duplicate elimination ratio due to high
cross- node redundancy. Similarity in this context means
that two segments of a data stream or two files of a dataset

IJRCS - International Journal of Research in Computer Science
Volume: 01 Issue: 04 2014 www.researchscript.com 10

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

share many chunks even though they arrive in a random
order.

The most similar stored segments or files are prefetched to
deduplicate the processing segment or file in low-locality
workloads by exploiting a property called logical
localitySimilarity-only based methods [6], [20], [30]
leverage data similarity to distribute data among
deduplication nodes to reduce cross-node duplication,
while they also often fail to obtain good load balance and
high intra-node deduplication ratio by fingerprint based
mapping and allowing some duplicate chunks to be stored.
In recent years, researchers [32], [33] exploitbothdata
similarity and locality to strike a sensible tradeoff between
the con-flicting goals of high deduplication effectiveness
and high performance scalability for distributed
deduplication

2.2 CONNECTED CAR ENVIRONMENT
• The connected car is receiving much attention as
the next- generation Vehicle-IT convergence technology
due to the rapid development of mobile communication
technology and the ex- pansion of the smart device and
application services. Many auto manufactures have been
independently developing connected car technologies such
as OnStar of GM or Connected Drive of BMW. In
addition, with the popularity of a Pay-as-You-Drive
insurance, a variety of electronic devices are being sold
that connect to the car’s OBD2 (On-Board Diagnostics)
port and can be used by smartphone applications. In
general, a connected car is a vehicle that is always
connected to external networks while driving. As in [16]
and [18], Our attack model is designed based on an
environment where a driver uses a self-diagnostic app to
monitor status information after installing an OBD2 scan
tool on the vehicle and then pairing it with his/her
smartphone by Bluetooth. When the driver installs on
his/her smartphone the malicious self- diagnostic app
distributed by an attacker, the attacker can launch the
actual attack. The attacker can obtain status informa-tion of
the vehicle from the malicious self-diagnostic app and use
it to inject malicious data into the in-vehicle network. Since
the malicio us self-diagnostic app and attacker’s server
commu-nicate using the mobile communication network
(e.g., 3G, 4G, or LTE), the attack is unconstrained by
distance. Furthermore, as our attack model uses ECU
forced control data commonly used for the same model
(more precisely, vehicles with the same configuration of
automotive electronic subsystems), it is not necessary to
physically occupy the target vehicle in advance. The victim
of the target vehicle downloads the malicious self-
diagnostic app to his/her smart-phone through an app
market. The victim does not recognize that the app is
performing malicious acts such as eavesdropping or replay
attack on the in-vehicle CAN. In our proposed attack
model, we do not consider an attack to compromise the
ECU installed on the vehicle inside or an attack to
manipulate the firmware of ECU, as these requirements

An adversary has access to an automotive diagnostic tool
to acquire a CAN data frame to force control of an ECU
before launching an actual attack. The attacker can
eavesdrop and inject the CAN data frame using a malicious
self-diagnostic app into the in-vehicle CAN in the
connected car environment. Thus, the attacker does not
have to attack the target from a short range. The app may
be widely spread through the app markets by masquerading
as a legitimate self-diagnostic app for a vehicle.

3 TWO-TIERED DATA ROUTING SCHEME
As a new contribution of this paper, we present the two-
tiered data routing scheme including: the file-level appli-
cation aware routing decision in director and the super-
chunk level similarity aware data routing in clientThe

application aware routing decision is inspired by our
application difference redundancy analysis in Section 2.2.
It can distinguish from different types of application data
by exploiting application awareness with filename
extension, and selects a group of dedupe storage nodes as
the corresponding application storage nodes, whichhave
stored the same type of application data with the file in
routing. This operation depends on an application route
table structure that builds a mapping between application
type and storage node ID. The application aware routing
algorithm is shown in Algorithm 1, which performs in the
application aware routing decision module of directo

Algorithm 1. Application Aware Routing Algorithm

Input: the full name of a file, fullname, and a list of all
dedupe storage nodes {S1, S2, …, SN}
Output: a ID list of application storage node,
ID_list={A1, A2, … , Am}

1. Extract the filename extension as the application
type from the file full name fullname, sent from client side;
2. Query the application route table in director, and
find the dedupe storage node Ai that have stored the same
type of application data; We get the corresponding
application storage nodes ID_list={A1, A2, … , Am}
 {S1, S2, …, SN};
3. Check the node list: if ID_list=  or all
ID_list are overloaded, then add the dedupe storage node
SL with lightest workload into the list ID_list={SL};
4. Return the result ID_list to the client.

Algorithm 2. Handprinting Based Stateful Data Routing

 Input: a chunk fingerprint list of super-chunk S in a file,
{fp1, fp2, … , fpc}, and the corresponding application
stor-age node ID list of the file, ID_list={A1, A2, … , Am}
Output: a target node ID, i

1. Select the k smallest chunk fingerprints {rfp1, rfp2,
…, rfpk} as a handprint for the super-chunk S by sorting
the chunk fingerprint list {fp1, fp2, …, fpc}, and sent the

Research script | IJRCS
Volume: 01 Issue: 04 2014 © Researchscript.com 11

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

handprint to k candidate nodes with IDs mapped by
consistent hashing in the m corresponding application
storage nodes;
2. Obtain the count of the existing representative
finger-prints of the super-chunk S in the k candidate nodes
by comparing the representative fingerprints of the
previously stored super-chunks in the application-aware
similarity index, are denoted as {r1, r2, …, rk};
3. Calculate the relative storage usage, which is a
node storage usage value divided by the average storage
usage value, to balance the capacity load in the k can-
didate nodes, are denoted as {w1, w2,
…, wk};
Choose the dedupe storage node with ID i that satisfies
ri/wi
= max{r1/w1, r2/w2, …, rk/wk} as the target node.

3.1 Application-aware Deduplication Efficiency
In our design, the client performs data partitioning and
chunk fingerprinting in parallel before data routing deci-
sion. It can divide the files into small chunks with fix-sized
SC or variable-sized CDC chunking methods for each kind
of application files, and calculates the chunk fingerprints
with cryptographic hash function. Then, hundreds of or
thousands of consecutive smaller chunks are grouped
together as a super-chunk for data routing. The
implementation of the hash fingerprinting is based the
OpenSSL library. According to the study in [19], we select
SHA-1 to reduce the probability of hash collision for fix-
sized SC chunking, while we choose MD5 for variable
sized CDC chunking for high hashing throughputwith
almost the same hash collision possibility.To exploit the
multi-core or many-core resource of the dedupe storage
node, we also develop parallel applica-tion-aware
similarity index lookup in individual dedupe servers. For
our multiple-data-stream based parallel de-duplication,
each data stream has a deduplication thread, but all data
streams share a common hash-table based application-
aware similarity index in each dedupe server. We lock the
hash-table based application- aware similarity index by
partitioning the index at the application granu-larity to
support concurrent lookup. As we demonstrated in [33], the
single-node parallel deduplication perform the best in
application-aware- similarity-index lookup when the
number of data streams equals to that of supported CPU
logical cores, while the performance of more streams drops
when the number of locks is larger than the num-ber of
data stream because of the overhead of thread con-text
switching that causes data swapping between cache and
memory.
We compare our application aware similarity index with
the traditional similarity index in [33] for parallel
deduplication throughput in single dedupe storage node
with multiple data streams. The results in Fig. 6 show the
parallel deduplication throughput using the VM dataset,
with data input from RAMFS to eliminate the perfor-
mance interference of the disk I/O bottleneck. We test the
throughput of both traditional similarity index (Naive) and

application aware similarity index (Application aware)
with cold cache or warm cache, respectively. Here, “cold
cache” means the chunk fingerprint cache is empty when
we first perform parallel deduplication with multi-ple
streams on the VM dataset. While “warm cache”

means the duplicate chunk fingerprint had already been
stored in the cache, when we perform parallel deduplica-
tion with multiple streams again on the same dataset. We
observe that the parallel deduplication schemes with ap-
plication-aware similarity index perform much better

3.2 Load Balance in Super-Chunk Assignment
Load balance is an important issue in distributed storage
technique [41]. It can help improve system scalability by
ensuring that client I/O requests are distributed equitably
across a group of storage servers. The implementation of
consistent hashing based DHTs in traditional distributed
deduplication [6], [9], [10] are considerable load
imbalance due to its stateless assignment design. In
particular

a storage node that happens to be responsible for a larger
segment of the keyspace will tend to be assigned a greater
number of data objects. In subsection 4.2, we defined DS
as a metric for data skew in the storage server cluster. Data
assignment method can achieve global load balance when
DS=0. The larger DS value we measured inthe test, the
more serious load imbalance happened in the storage
cluster.

To make our conclusionmore general, we not only consider
an ideal scenario that each super-chunk is filled with
random data in Fig. 8(a), but also perform the tests on real
world datasets: VM images, Linux source code, and mail
datasets with 10 and 1280 nodes, respectively, as shown in
Fig. 8(b). Super- chunk chooses the least loaded node in

Research script | IJRCS
Volume: 01 Issue: 04 2014 © Researchscript.com 12

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

the k storage nodes that are mapped independently and
uniformly at random by consistent hashing with the k
representative fingerprints in its handprint. The
effectiveness of load balancing has been tested with
different handprint size and node number in Fig. 8. The
average load of each node is 65536 super-chunks with 1
MB size. The important implication of the results is that
even a small amount of representative fingerprints in
handprint can lead to drastically different results in load
balancing. It shows that traditional schemes, like DHT [9]
or hash-bucket [10], with only one representative finger-
print for choice are hard to keep a good load balance in the
super- chunk assignment. When the cluster scales to
hundreds or thousands of nodes, our handprint technique
can keep a good load balance (the metric of data skew is
less than 1) by routing the super-chunks with k  4
random choices. We select handprint size from 4 to 16 to
make a tradeoff between load balance and communica-tion
overhead for large-scale distributed deduplication in big
data.

5 DISTRIBUTED DEDUPLICATION EFFICIENCY
We route data at the super-chunk granularity to preserve
data locality for high performance of distributed dedup-
lication, while performing deduplication at the chunk
granularity to achieve high deduplication ratio in each
server locally. Since the size of the super-chunk is very
sensitive to the tradeoff between the index lookup per-
formance and the distributed deduplication effectiveness,
as demonstrated by the sensitivity analysis on super- chunk
size in [7], we also choose the super-chunk size of 1MB to
reasonably balance the conflicting objectives of cluster-
wide system performance and capacity saving, and to
fairly compare our design with the previous EMC
distributed deduplication mechanism.

ful scheme for a clusterof 128 server nodes on the seven
datasets, while this performance margin narrows to 103.6%
when averaging over all cluster sizes, from 1 through 128.
Stateless routing performs worse than AppDedupe,
Produck and Stateful routing due to its low cluster-wide
data reduction ratio and unbalanced capaci- ty distribution.
Extreme Binning underperforms Stateless routing on the
workloads because ofthe large file size and skewed file size
distribution in the datasets, work-load properties that
tend to render Extreme Binning’s

similarity detection ineffective. Produck achieves higher
normalized EDR than Stateless routing and Extreme Bin-
ning due to its stateful routing design, but it underper-
forms AppDedupe on all datasets for its low deduplica-
tion ratio and unbalanced load distribution. AppDedupe
outperforms Extreme Binning in EDR by up to 72.7% for a
cluster of 128 nodes on the five datasets containing file-
level information. For the seven datasets, AppDedupe is
better than Stateless routing in EDR by up to 50.5% for a
cluster of 128 nodes. Our AppDedupe achieves an im-
provement of 28.2% and 11.8% in EDR with respect to
Produck and -Dedupe on all datasets in a cluster of 128
nodes, respectively. As can be seen from the trend of
curves, these improvements will likely be more pro-
nounced with cluster sizes larger than 128
duplication due to their stateless designs. Stateful routing,
on the other hand, must send the fingerprint lookup re-
quests to all nodes, resulting in 1-to-all communication that
causes the system overhead to grow linearly with the node
number even though it can reduce the overhead in each
node by using a sampling scheme. Produck has high
communication overhead due to its fine-grained chunk size
with 1KB, while other deduplication methods adapt 4KB
or 8KB. The number of fingerprint-lookup messages in
Produck is about four times that of AppDedupe, Ex- treme
Binning and Stateless routing, and it grows as slow as these
three low-overhead schemes. As described in Algorithm 1,
the main reason for the low system over-head in
AppDedupe is that the pre- routing fingerprint-lookup
requests for each super- chunk only need to be sent to at
most 8 candidate nodes, and only for the lookup of
representative fingerprints, which is 1/32 of the num-ber of
chunk fingerprints, in these candidate nodes. The message
overhead of AppDedupe in fingerprint lookup is about 1.25
times that of Stateless routing and Extreme Binning in all
scales. -Dedupe is the preliminary version of our
AppDedupe, and they have almost the same com-
munication overhead due to their consistent interconnect
protocol.

6. CONCLUSION
In this paper, we describe AppDedupe, an application-
aware scalable inline distributed deduplication frame-
work for big data management, which achieves a tradeoff
between scalable performance and distributed deduplica-
tion effectiveness by exploiting application awareness,
data similarity and locality. It adopts a two-tiered data
routing scheme to route data at the super-chunk granular-
ity to reduce cross-node data redundancy with good load
balance and low communication overhead, and employs
application-aware similarity index based optimization to
improve deduplication efficiency in each node with very
low RAM usage. Our real-world trace-driven evaluation
clearly demonstrates AppDedupe’s significant adven-
tages over the state-of-the-art distributed deduplication
schemes for large clusters in the following important two
ways. First, it outperforms the extremely costly and poor 7

Research script | IJRCS
Volume: 01 Issue: 04 2014 © Researchscript.com 13

 IJRCS - International Journal of Research in Computer Science ISSN: 2349-3828

REFERENCES

[1] Gantz, D. Reinsel, “The Digital Universe Decade-Are You
Ready?” White Paper, IDC, May 2010.

[2] Biggar, “Experiencing Data De-Duplication: Improving
Efficiency and Reducing Capacity Requirements,” White Paper,
the Enterprise Strategy Group, Feb. 2007.

[3] R. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen, H. Lei. “An
Empirical Analysis of Similarity in Virtual Machine Images,”
Proc. Of the ACM/IFIP/USENIX Middleware Industry Track
Workshop (Middleware’11), Dec. 2011.

[4] Srinivasan, T. Bisson, G. Goodson, and K. Voruganti. “iDedup:
Latency-aware, inline data deduplication for prima- ry storage,”
Proc. of the 10th USENIX Conference on File and Storage
Technologies (FAST’12). Feb. 2012.

[5] Shilane, M. Huang, G. Wallace, and W. Hsu. “WAN opti- mized
replication of backup datasets using stream-informed delta
compression,” ACM Transactions on Storage (TOS), 8(4): 915-
921, Nov. 2012.

Research script | IJRCS
Volume: 01 Issue: 04 2014 © Researchscript.com 14

	1. Introduction

