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Abstract— In this paper, we propose an efficient algorithm to remove rain or snow from a single colour image. Our algorithm takes 
advantage of two popular techniques employed in image processing, namely, image decomposition and dictionary learning. At first, a 
combination of rain/snow detection and a guided filter is used to decompose the input image into a complementary pair: (1) the low-
frequency part that is free of rain or snow almost completely and (2) the high-frequency part that contains not only the rain/snow 
component but also some or even many details of the image. Then, we focus on the extraction of image’s details from the high-frequency 
part. To this end, we design a 3-layer hierarchical scheme. In the first layer, an over-complete dictionary is trained and three 
classifications are carried out to classify the high-frequency part into rain/snow and non- rain/snow components in which some common 
characteristics of rain/snow have been utilized. In the second layer, another combination of rain/snow detection and guided filtering is 
performed on the rain/snow component obtained in the first layer. In the third layer, the sensitivity of variance across color channels 
(SVCC) is computed to enhance the visual quality of rain/snow-removed image. The effectiveness of our algorithm is verified through 
both subjective (the visual quality) and objective (through rendering rain/snow on some ground-truth images) approaches, which shows 
a superiority over several state-of-the-art works.   
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1.  INTRODUCTION  
It is well-known that a bad weather, e.g., haze, rain, or 
snow, affects severely the quality of the captured images or 
videos, which consequently degrades the performance of 
many image processing and computer vision algorithms 
such as object detection, tracking, recognition, and 
surveillance. A study by Garg et al.  reveals that rain and 
snow belong to the dynamic weather - they contain 
constituent particles of relatively large sizes so that they 
can be captured easily by cameras. On the other hand, haze 
belongs to the steady weather - the particles are much 
smaller in size and can hardly be filmed. As a result, rain or 
snow leads to complex pixel variations and obscures the 
information that is conveyed in the image or video. 
Especially, the degradation on the involved algorithm’s 
performance would be severe if the algorithm is 
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We have outlined several common characteristics of rain 
and snow, from which two metrics are defined, namely, the 
sensitivity of variance across color channels (SVCC) and 
the principal direction of an image patch (PDIP). • A 
lowfrequency part that is free of rain or snow al- most 
completely has been generated, thanks to the use of a 
combination of rain/snow detection and a guidedPersonal 
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See http://www.ieee.org/publications_standards/public 
ations/rights/index.html for more information.filter  while 
the corresponding highfrequency part is made 
complementary to the low- frequency part. • A 3-layer 
hierarchy of extracting image’s details from the high-
frequency part has been designed. Specifically, the first 
layer is a 3-times classification that is based on a trained 
dictionary (overcomplete), the second layer applies another 
combination of rain/snow detection and a guided filter, and 
the third layer utilizes the SVCC to enhance the visual 
quality of the rain/snow-removed image. The rest of our 
paper is organized as follows. Section II presents some 
related works. In particular, several very recent works will 
be discussed on their pros and cons, which there- fore 
motivates us to develop our new hierarchical approach. 
Section III discusses some common characteristics of rain 
and snow, based on which the SVCC and PDIP will be 
defined. The details of our proposed rain/snow removal 
algorithm are presented in Sections IV and V. In Section 
VI, we show some experimental results and present 
comparisons between our algorithm and several state-of-
the-art works. Finally, Section VII summarizes our work 
and concludes the paper.  

2. RELATED WORKS  
The earliest work on the dynamic weather such as rain and 
snow can date back to the study of their statistical 
characteristics in the atmospheric science in 1948. Then, 
Nayar et al. studied the visual manifestations of different 
weather conditions, including rain and snow .A pioneering  
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 In general, the recent methods for rain/snow removal from 
a single image can be classified into three categories. The 
first category is simply filtering-based where a nonlocal 
mean filter or guided filter is often used. Due to the use of a 
filter simply, its implementation is very fast. However, it 
can hardly produce a satisfactory performance consistently 
- either the output image is left over with some rain streaks 
(snowflakes) or quite a few image’s details are lost so that 
the output image becomes blurred. The second category 
builds models for rain streaks or snowflakes. These models 
can discriminate rain streaks or snowflakes from the 
background. However, it often happens that some details of 
the image will be mistreated as rain streaks or snowflakes. 
The third category, which seems more reasonable, is to 
form a 2- step processing. Specifically, a well-designed 
filtering is first used to decompose a rain/snow image into 
the low-frequency part and high-frequency part. While the 
low- frequency part can be made free of rain or snow as 
much as possible, the model-based processing can be 
applied on the high-frequency part to further extract the 
image’s details to be added back into the lowfrequency 
part. We follow this 2-step approach in our work. As 
compared to the existing 2-step methods [the novelty of 
our proposed approach is two-fold. In the first step, instead 
of applying a low-pass filtering simply, we combine a 
rain/snow detection together with a guided filter. By doing 
this, we can achieve a much improved balance between 
removing rain/snow components and preserving image’s 
details - the resulted low-frequency part becomes free of 
rain or snow almost completely and at the same time 
contains the image’s details to a reasonable extent. 3-layer 
hierarchy of extracting the image’s details will prove to be 
more effective than the extraction method proposed in, 
though the method in also consists of 3 layers.  

3. COMMON CHARACTERISTICS OF RAIN AND 
SNOW  
. In this section, however, we try to find some common 
characteristics of these dynamic components. First of all, 
because of strong reflections by rain/snow, high intensity 
values tend to be resulted at pixels that are affected by 
rain/snow. Therefore, the values of rain/snow pixels in an 
image are usually larger than their neighboring non-
rain/snow pixels. Secondly, edge jumps usually exist in 
natural images be- tween rain streaks or snowflakes and 
their horizontal neigh- bors. Therefore, an image patch that 
includes rain/snow will usually produce larger average 
absolute horizontal gradients. Fig. 1 shows a rain image 
and a snow image, respectively, where the above two 
characteristics can be observed clearly. Thirdly, let us 
decompose a rain or snow image into the lowfrequency and 
high-frequency parts and use {RL(i,j), GL(i,j), BL(i,j)} and 
{RH(i,j), GH(i,j), BH(i,j)} to denote three color values of a 
pixel I(i,j) in these two parts. Fig. 2 shows the decomposed 
results for the images presented in Fig. 1, where the 
detailed decomposition will be described in the next 
section. It can be seen that rain/snow pixels in the high-
frequency part are gray or shallow white. Moreover, three 
color channels of a rain/snow pixel in the high-frequency  
A. Sensitivity of variance of color channels (SVCC)  
Based on the third characteristic of rain/snow described 
above, the variance of the color vector corresponding to a 

rain/snow pixel in the high-frequency part tends to be very 
small, while the variance of the color vector corresponding 
to a non-rain/snow pixel is usually big. This implies that 
the variance of a pixel’s color channels can be used to 
discriminate the rain/snow part from the non-rain/snow 
part. Here, we define the sensitivity of variance of color 
channels (SVCC) as the differences between the dynamic 
component and other contents of an image. For a pixel at 
location (i,j) in a given image I, the color vector is formed 
as: I(i,j) = [R(i,j),G(i,j),B(i,j)]T . (1)  
Distribution of variances for the selected 500 rain pixels. 
(b) Distribution of variances for the selected 500 non-rain 
pixels. (c) Distribution of variances for the selected 500 
snow pixels. (d) Distribution of variances for the selected 
500 non-snow pixels.  
V (i,j) = e V (i,j) ˜ Vmax!γwhere ˜ Vmax stands for the 
maximum color channel variance and γ is a power function 
parameter to expand or compress the contrast of the SVCC 
map. Fig. 4 shows the SVCC maps visually for the rain and 
snow images of Fig. 1, where γ = 1.1. It could be observed 
that rain or snow areas possess low values (deep blue 
stands for low value according to the energy bar) in the 
SVCC map, while the non-rain/snow objects whose color 
variances are relatively large lead to high values (red areas 
and bright blue areas) in the SVCC map. How to make use 
of the SVCC map for our task of rain/snow removal will be 
described in Section V, together with some discussions on 
how to choose γ.  
B. Principal direction of an image patch (PDIP)  
gradient (HOG) proposed by Dalal et al. can be used to 
separate rain streaks from the image . However, snowflakes 
in an image do not always have con- sistent falling 
directions. Snowflakes with high falling speed may follow 
nearly consistent falling directions, but point-like 
snowflakes are often perceived when snow is falling down 
slowly, such as the example . Obviously, HOG will fail 
when encountering point-like snow. If an image patch 
contains rain streaks or snowflakes with a consistent falling 
direction, its HOG often forms an impulse at the angle 
corresponding to the rain or snow direction. By the K-
means method, we can classify rain or snow from an 
image. Therefore, we register the angle corresponding to 
the HOG bin that has the maximum value as the principal 
direction of an image patch (PDIP) to identify rain/snow in 
our work.  

4. OUR PROPOSED ALGORITHM  
The pipeline of our proposed rain/snow removal is shown 
in Fig. 6. Specifically, our algorithm consists of two steps. 
In the first step, the input image is decomposed into the 
low- frequency part IL and high-frequency part IH. Note 
that IL1057-7149 (c) 2016 IEEE. Personal use is permitted, 
but republication/redistribution requires IEEE permission. 
See http://www.ieee.org/publications_standards/publicatio 
ns/rights/index.html for more information.  
This article has been accepted for publication in a future 
issue of this journal, but has not been fully edited. Content 
may change prior to final publication. Citation information: 
DOI 10.1109/TIP.2017.2708502, IEEE Transactions on 
Image ProcessingIM is the Hadamard product of I and MI; 
IL and IH are, respectively, the low-frequency and high-
frequency parts obtained after the decomposition.is free of 
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rain or snow almost completely but usually blurred, while 
IH contains rain/snow components and some or even many 
details of the image. In the second step, we design a 3-layer 
hierarchy of extracting non-dynamic components (i.e., the 
image’s details) from IH, which are denoted as IND1 H , 
IND2 H , and IND3 H , respectively. The final rain/snow-
removed image is obtained as:  
ˆ I = IL + IND1 H + IND2 H + IND3 H (5)  
In this section, we pay attention to the first step and the 
details of the second step are described in the next section. 
Fig. 7 shows the details of the first step. First, a rain/snow 
detection is performed to produce a binary location map MI 
and the  
A. Detection of Dynamic Components  
In general, some low-pass filter (e.g. the guided filter) can 
be used to decompose a rain or snow image into the low- 
frequency part and high-frequency part. However, such a 
low- pass filtering can hardly filter out all dynamic 
components (i.e., rain or snow). To solve this problem, we 
propose to first perform a rain/snow detection to obtain the 
coarse locations of these dynamic components and then 
apply a guided filter to obtain the low-frequency part that 
would become free of rain or snow almost completely.  
This article has been accepted for publication in a future 
issue of this journal, but has not been fully edited. Content 
may change prior to final publication. Citation information: 
DOI 10.1109/TIP.2017.2708502, IEEE Transactions on 
Image Processing respectively. Through this process, it is 
found that we have obtained a better low-frequency part 
than that by directly applying the guided filter in the sense 
that it preserves more details of the image and retain nearly 
no trace of rain or snow. Finally, the high frequency part 
IH is obtained as IH = I − IL, i.e., IL and IH are completely 
complementary to each other. The low/high-frequency 
parts that have been shown earlier in Fig. 2 are obtained by 
exactly following this comple- mentary decomposition. 
Note that the guided filter [26] and the bilateral filter [30] 
are both very good smoothing filters while preserving 
edges. In our work, we choose the guided filter for the 
image decomposition.  

5. A 3-LAYER HIERARCHY OF EXTRACTING 
IMAGE DETAILS IN IH  
After the first step, almost all rain/snow components 
remain in the high-frequency part, but some or even many 
details of the image are also included in this part. Our 
second step is to recover these image details as much as 
possible so that they can be added back to the low-
frequency part to obtain the final rain/snowremoved image. 
This job is further split into three layers, as shown in Fig. 
9: • a dictionary learning and dictionary atoms 
classification are used to classify dynamic components 
(i.e., rain or snow) from non 
A. Dictionary Learning for IH  
Because the location of rain/snow in the image is random, 
it is difficult to accurately separate rain/snow with other 
non- rain/snow components by normal detection methods. 
Dictionary learning is an excellent image decomposition 
method, which can decompose an image into many 
components. Some are rain/snow components and the other 
are non-rain/snow components. In this subsection, we try to 
represent IH by a sparse coding that is based on learning an 

overcomplete.The trained dictionaries for the 
highfrequency part of (a) the rain image and (b) the snow 
image shown earlier . The flow chart of classifications of 
dictionary atoms and sparse reconstruction.dictionary 
iteratively:  
Dk = arg min D∈1 kk X(12kui − Dαik2 2 ) 
where k = 1,2,...,K, K is the number of training samples 
and also the iteration number, Dk is the dictionary obtained 
after the kth iteration, and the dictionary DK obtained after 
the Kth iteration is the final dictionary D. For fear of 
having too large values, Dk must be subjected to the 
following constraint: C = {D ∈ Rm×ns.t.∀j = 1,...,n,dT j dj 
≤ 1} (10) where dj is the jth column vector in dictionary D 
and named as the jth dictionary atom, m is the dimension 
of an atom, and n is the number of atoms in D. Here, the 
parameter αi in  
the atoms back to 16 × 16 × 3 cubes. Fig. 10(a) and (b) 
show these atoms for the rain and snow images of Fig. 1.  
B. Layer-1 Extraction  
From the dictionary obtained above, dynamic components 
and non-dynamic components can be separated by 
dictionary atoms. Namely, some dictionary atoms stand for 
dynamic components and others for non-dynamic 
components. To this goal, three classifications of dictionary 
atoms are implemented, as shown in Fig. 11. In the end, 
dynamic component ID H and non-dynamic component 
IND1 H are achieved by a sparse reconstruction. First 
classification. According to the third characteristic 
discussed in Section II, dictionary atoms standing for 
dynamic components will have a smaller sum of pixel 
color channel variance.  
classification, the dynamic component is denoted as ID C2 
and the non-dynamic component as IND C2 , respectively. 
Third classification. For the non-dynamic details in ID C2, 
we further propose to find the PDIPs of dictionary atoms 
corresponding to ID C2. Here, we treat a dictionary atom 
as a patch. Majority of texture components in ID C2 is 
dynamic. Hence, a large number of dictionary atoms 
corresponding to ID C2 are dynamic atoms, while only a 
small part of atoms corresponds to non-dynamic 
components whose textures are very different from the 
dynamic weather. While the PDIPs of dynamic atoms are 
nearly  
holds, atom Dj is classified as non-dynamic; otherwise it is 
viewed as dynamic. Here, ρ is the control parameter to get 
accurate results. After the third classification and reconstru 
tion which is similar to the first two reconstruction 
processes, we obtain the dynamic component ID C3 and 
non-dynamic component IND C3 . Eventually, after three 
times of classification, we obtain the non-dynamic 
component IND1 H and dynamic component ID H as 
follows: IND1 H = IND C1 + IND C2 + IND C3 ID H = 
ID C3   Extraction A minority of non-dynamic details still 
exist in ID H. In order to get more image’s details, we 
detect dynamic components in IH again by the method 
described in Section III (i.e., a combination of rain/snow 
detection and a guided filter) and employ the newly 
calculated location map MH to fill the hole. Then, by 
applying the guided filter, we get the nondynamic part 
IND2 H (Layer-2) as IND2 H = Fg Fm{ID H ◦ MH} . 
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D. Layer-3 Extraction 
The result is  rain and snow, respectively. The principle for 
choosing γ in the computation of the SVCC map is as 
follows. If rain/snow is bright (i.e., with high intensity 
values), we should choose γ > 1 to minimize the rain/snow 
trace in the final result. On the other hand, for rain/snow 
with very low intensity, γ could be smaller than 1. In this 
case, a little rain/snow trace remains, which nevertheless is 
hard to recognize visually because rain/snow has a very 
low intensity. Either too big or too small γ would destroy 
this purpose. In our experiments, we choose γ = 1. 
 E. Individual Contributions  
In order to show the individual contribution of each of the 
three layers described above, we present the resulted 
images in Fig. 16 for rain and Fig. 17 for snow, 
respectively. The results show that Layer-1 extraction 
provides a more significant contribution as compared to 
Layer-2. This is because that only very little nonrain/snow 
details still exist in ID H. In the meantime, however, Layer-
3 extraction seems to play a very positive role. It can be 
seen from Fig. 16(d) and 17(d) that the contrast and color 
textures have been improved a lot by using the SVCC map. 
Notice that, for some specific images that have high-
intensity rain/snow, SVCC will leave a littleRain-removed 
results: (a) the input image; (b) rain-removed image 
obtained by IL+IND1 H ; (c) rain-removed image obtained 
by IL+IND1 H +IND2 H ; and (d) rain-removed image 
obtained by IL + IND1 H + IND2 H + IND3 H . Snow 
removed results: (a) the input image; (b) snow removed 
image obtained by IL + IND1 H ; (c) snow removed image 
obtained by IL + IND1 H + IND2 H ; and (d) snow-
removed image obtained by IL + IND1 H + IND2 H + 
IND3 H .  
rain/snow trace in the final results. This problem can be 
solved partially by a fine-tuning on the parameter γ. To 
show their individual contributions quantitatively, we have 
synthesized a rain image and a snow image, i.e., a ground-
truth image is known and rain or snow is rendered on the 
ground-truth. We list in Table II the contribution of every 
layer by computing the peaksignal-to-noise-ratio (PSNR) 
and structural similarity (SSIM). It could be observed from 
this table that the above-described results (i.e., the 
individual con- tributions from three layers) have been 
verified  

6. EXPERIMENTAL RESULTS  
In this section, we demonstrate the rain/snow-removing 
effectiveness of our proposed algorithm by comparisons 
with several state-of-the-art works. In our experiments, 
three pa- rameters T1, T2, and ρ used in the classification 
of dictionary  
atoms are chosen to be {0.1, 0.02, 1.5} for rain and {0.12, 
0.03, 2} for snow, respectively. We would like to point out 
that, for a specific rain/snow image, these parameters could 
be fine-tuned to achieve a better performance. Figs. 20 and 
21 show, respectively, some rain-removed results and 
snow- removed results by different algorithms. In order to 
assess these results fairly, we first present the subjective 
evaluations in the following.  
A. User Study  
Lu et al., Chenet al., Li et al. and our method. Another 10 
groups of snow-removed results are selected and every 

group involves the results by Ding et al., X et al., Chen et 
al. and our method. To ensure the fairness, the results in 
each group are arranged randomly. For each group, the 
viewers are asked to select only one result which they like 
most. The evaluation result is shown in Table III. It is clear 
that our rain/snow removal results are favored by a huge 
majority of viewers (65.50% for rain and 87.50% for 
snow).  
B. Objective Assessment  
To facilitate the objective assessment, we render rain or 
snow on ground-truth images1. Several examples and their 
corresponding rain/snow-removed results by different 
methods  
1Here, we follow  to render rain streaks and also use it for 
rendering snowflakes with a different setting of 
parameters.are sadopted as the quantitative metrics to 
assess the performance of different methods. In Tables IV 
and V, we list the PSNR and SSIM values of 11 rain 
images and 11 snow images, respectively. According to 
these results, it could be observed that our method 
outperforms the selected state-of-the-art works for 
removing rain or snow. Especially, our method produces 
much better results for snow images.  
C. Result Analysis  
The fifth column in Fig. 20 is the results by Li et al.. This 
work can obtain an excellent rain-removed result for a rain 
image which has less small details. While for an image 
with many small image details (the second and third ones), 
this work will loss some image details. The fourth column 
in Fig. 20 is the results by Chen et al. [18]. It is found that 
this  
Fig. 20. Rain-removal results: (a) rain image; (b) results by 
Ding et al.  (d) results by Chen et al. [18]; (e) results by Li 
et al.  (f) results by our method. method has produced very 
good results for light rain images, such as the first, second 
and third images. However, when the intensity of a rain 
pixel is large, i.e., the relatively heavy rain (such as the 
fifth one) or the edge of rain streaks are blurry (e.g., the 
sixth one), this method falls. The third column in Fig. 20 is 
the results by Luo et al. The results by Ding et al.  are 
displayed in second column in  This method produces 
satisfactory results for the fifth and sixth images. However, 
this method only removes rain streaks, cannot revise the 
shadows produced by rain streaks (the second one). The 
results of our proposed algorithm are shown in the last 
column. By comparison, it could be observed that our 
method is suitable to all rain images tested in our 
experiments and produces a highly competing 
performance. For some relatively heavy rain image, a hazy 
effect will appear in the rain-removed results. We can 
further implement the de- haze algorithm  to solve this 
problem to a certain extent.  
We analyze the performance of each method as follows. 
The work by [18] only uses a low-pass filter to separate the 
rain/snow image into the low-frequency and high-
frequency parts. When the intensity of rain/snow is large, it 
is difficult to obtain a rain/snowfree low-frequency part. 
Hence, this work  
Fig. 21. Snow-removal results: (a) snow image; (b) results 
by Ding et al. [22]; (c) results by Xu et al. [19]; (d) results 
by Chen et al. [18]; (e) results by our method.can not 
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remove rain/snow with high intensity. Besides, this work 
uses HOG as the descriptor to identify rain streaks. 
to remove rain/snow from images. Even though the guided 
filtering is a good edge-preserving low-pass filter, it is 
inevitable that the processed image gets blurred.  
D. Complexity Analysis  
We implement our algorithm using MATLAB on an Intel 
(R) Xeon (R) CPU E5-2643 v2 @ 3.5 GHz 3.5 GHz (2 
pro- cessors) with 64G RAM. We test the run  
time on a 256×256 image. The total time consumed by our 
method is 82.60 seconds, where the detection takes 5.71 
seconds and the SVCC takes 1.85 seconds. Majority of 
time is spent in the dictionary learning part, which is 60.82 
seconds. Classifications and sparse reconstruction spend 
13.81 seconds. The remaining run  
1057-7149 (c) 2016 IEEE. Personal use is permitted, but 
republication/redistribution requires IEEE permission. See 
http://www.ieee.org/publications_standards/publicatio 
ns/rights/index.html for more information.  
This article has been accepted for publication in a future 
issue of this journal, but has not been fully edited. Content 
may change prior to final publication. Citation information: 
DOI 10.1109/TIP.2017.2708502, IEEE Transactions on 
Image Processing  
IEEE TRANSACTIONS ON IMAGE PROCESSING, 
VOL. XX, NO. XX, XX 2016 13  
(a) (b) (c) (d) (e) (f) (g)  
Fig. 22. (a) Ground-truthes. (b) Original synthesized rain 
images. (c) results by Ding et al. [22]; (d) results by Luo et 
al. [23]; (e) results by Chen et al. [18]; (f) results by Li et 
al. [24]; (g)results by our method. The values at top left 
corner are PSNR/SSIM. (e) results by Chen et al.  (f) 
results by our method. The values at top left corner are 
PSNR/SSIM.t is consumed by intermediate steps of our 
algorithms. The time consumed by the works of Chen et 
al., Luo et al.  Ding et al.Xu et al. , Li et al. are 95.17, 
68.66, 1.18, 0.27 and 1260.40 seconds, respectively.The 
run time changes with the size of images. Therefore, we 
analyze the complexity of major steps as follows. Suppose 
that the size of an given rain/snow image is M×N, l is the 
number of windows we use to identify rain/snow pixel 
from the given rain/snow images (which is 5 in this paper). 
The computational complexity of rain/snow detection is 
O(M × N × l). For the online dictionary learning, the 
number of training samples is K, the size of every training 
sample is L × 1, the number of dictionary atoms is Q, the 
size of every dictionary atoms is L × 1 (L < Q   K), S is the 
target sparsity, and T is the iteration number. Then, the 
complexity of the online dictionary learning and sparse 
reconstruction are O(T × K(N × S2 + 2 × L × Q)) and 
O(Q), respectively. We use the same dictionary learning 
method as the work by Chen et al. [18]. Therefore, the 
dictionary learning and sparse reconstruction have the 
equal computational complexity. On the other hand, we 
implement 3 classifications. Every classification has its 
own feature descriptors to describe dictionary  
E. Limitations Our proposed method uses some universal 
characteristics of rain and snow and develops accurate 
descriptors to represent rain and snow so that some very 
good results have been obtained. However, some 
shortcomings still exist in our work. First, for some 
relatively heavy rain images, such as the fourth images in 

Fig. 20, our method still produces blurring. Second, we 
notice that the parameters selected in our work are suitable 
for majority of rain and snow images except for some 
special images such as very blurred rain images or heavy 
snow images. Under this situation, we believe that the 
parameters need to be fine tuned for a better result. Finally, 
little snow trace can still be seen in some of our results 
when the size of snowflakes are large. Our future work will 
focus on solving these problems and obtaining better 
rain/snow- removed images.  

7. CONCLUSIONS  
This paper has attempted to solve the rain/snowremoving 
problem from a single color image by utilizing the 
common characteristics of rain and snow. To this end, we 
defined the principal direction of an image patch (PDIP) 
and the sensitivity of variance of color channel (SVCC) to 
describe the difference of rain or snow from other image 
components. We acquired the low and high frequency parts 
by implementing a rain/snow detection and applying a 
guided filter. For the high- frequency part, a dictionary 
learning and three classifications of dictionary atoms are 
implemented to decompose it into non- dynamic 
components and dynamic (rain or snow) components, 
where some common characteristics of rain/snow defined 
earlier in our work are utilized. Moreover, we have 
designed two additional layers of extracting image details 
from the high- frequency part, which are based on, 
respectively, the SVCC map and another combination of a 
rain/snow detection and a guided filtering. Finally, we have 
presented a large set of results to show that our method can 
remove rain or snow from images effectively, leading to an 
enhanced visual quality in the rain/snowremoved images.  
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